Skip to main content
Log in

Improvement of the interphase between basalt fibers and vinylester by nano-reinforced post-sizing

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Basalt fiber reinforced composites are innovative materials which may be used as an alternative to glass fiber-based composites in civil engineering applications. They exhibit high temperature resistance, corrosion resistance, low cost and excellent mechanical properties. However, according to previous studies, weak interfaces between the basalt fiber and the thermoset resin, such as polyvinylester, could be a problem for the use of basalt fibers reinforced polymers (BFRP) for civil engineering applications. To solve this problem, this study investigates the improvement of properties of basalt fibers coated with silica nano-reinforced epoxy resin. Three types of coatings were tested: epoxy resin, epoxy resin treated with fumed silica, and epoxy resin treated with silane-treated fumed silica. Silica nanoparticles were characterized by Fourier Transform Infrared Spectrometry (FTIR), Thermal Gravimetric Analysis (TGA) and micro-electrophoresis (Zeta-Nanosizer). Basalt fibers were dip-coated in diluted solutions/suspensions of epoxy coatings in acetone and analyzed using Scanning Electron Microscopy (SEM). Basalt fibers/vinylester (VE) composites were then prepared by compression molding. Tensile tests and interlaminar shear tests (ILSS) were performed on the different molded BFRP. Preliminary results show a 5–25 % improvement in mechanical properties depending on the type of coating. The presence of nanosilica at the interface between the basalt fiber and VE matrix leads to a significant enhancement of interlaminar and ultimate tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sim, C. Park, and D. Y. Moon, Compos. Part B-Eng., 36, 504 (2005).

    Article  Google Scholar 

  2. A. Ross, Compos. Technol., 12, 44 (2006).

    Google Scholar 

  3. D. Saravanan, J. Inst. Eng., 26, 39 (2006).

    Google Scholar 

  4. A. E. Refai, J. Compos. Constr., 17, 04013006 (2013).

    Article  Google Scholar 

  5. L. Qin, Z. Wang, H. Wu, and L. Zhang, Key Eng. Mater., 540, 119 (2013).

    Article  Google Scholar 

  6. H. Li, G. Xian, B. Xiao, and J. Wu in “Advances in FRP Composites in Civil Engineering” (L. Ye, P. Feng, and Q. Yue, Eds.), p.65, Springer Berlin Heidelberg, 2011.

  7. S. Kunal, Int. J. Tex. Sci., 1, 19 (2012).

    Google Scholar 

  8. J. Wu, H. Li, and G. Xian in “Advances in FRP Composites in Civil Engineering” (L. Ye, P. Feng, and Q. Yue Eds.), p.69, Springer Berlin Heidelberg, 2011.

  9. C. Colombo, L. Vergani, and M. Burman, Compos. Struct., 94, 1165 (2012).

    Article  Google Scholar 

  10. V. Lopresto, C. Leone, and I. D. Iorio, Compos. Part BEng., 42, 717 (2011).

    Article  Google Scholar 

  11. M. Biron, “Thermosets and Composites”, 2nd ed., p.25, William Andrew Publishing, Oxford, 2014.

    Book  Google Scholar 

  12. M. Robert, P. Wang, P. Cousin, and B. Benmokrane, J. Compos. Constr., 14, 361 (2010).

    Article  CAS  Google Scholar 

  13. O. C. Zaske and S. H. Goodman, “Handbook of Thermoset Plastics” (S. H. Goodman Ed.), 2nd ed., p.97, William Andrew Publishing, Westwood, NJ, 1999.

  14. J.-P. Pascault and R. J. J. Williams, “Epoxy Polymers”, p.1, Wiley-VCH Verlag GmbH & Co. KGaA, 2010.

    Book  Google Scholar 

  15. T. Czigány, “Polymer Composites”, p.309, Springer US, 2005.

    Book  Google Scholar 

  16. M. D. Lund and Y. Z. Yue, J. Non-Cryst. Solids, 354, 1151 (2008).

    Article  CAS  Google Scholar 

  17. L. Dilandro, A. T. Dibenedetto, and J. Groeger, Polym. Compos., 9, 209 (1988).

    Article  CAS  Google Scholar 

  18. S. L. Gao, R. C. Zhuang, J. Zhang, J. W. Liu, and E. Mäder, Adv. Funct. Mater., 20, 1885 (2010).

    Article  CAS  Google Scholar 

  19. X. Li, L. Tabil, and S. Panigrahi, J. Polym. Environ., 15, 25 (2007).

    Article  Google Scholar 

  20. F. Alimohammadi, M. Parvinzadeh Gashti, and A. Shamei, J. Coat. Technol. Res., 10, 123 (2013).

    Article  CAS  Google Scholar 

  21. J. Huang, I. Ichinose, and T. Kunitake, Chem. Commun., 1717 (2005).

    Google Scholar 

  22. N. A. Siddiqui, M. L. Sham, B. Z. Tang, A. Munir, and J. K. Kim, Compos. Pt. A-Appl. Sci. Manuf., 40, 1606 (2009).

    Article  Google Scholar 

  23. B. Wei, S. Song, and H. Cao, Mater. Des., 32, 4180 (2011).

    Article  CAS  Google Scholar 

  24. J. K. Kim and Y. W. Mai, “Engineered Interfaces in Fiber Reinforced Composites”, 1998.

    Google Scholar 

  25. J. Sagiv, J. Am. Chem. Soc., 102, 92 (1980).

    Article  CAS  Google Scholar 

  26. B. Wei, H. Cao, and S. Song, Compos. Pt. A-Appl. Sci. Manuf., 42, 22 (2011).

    Article  Google Scholar 

  27. S. Halder, P. K. Ghosh, M. S. Goyat, and S. Ray, J. Adhes. Sci. Technol., 27, 111 (2013).

    Article  CAS  Google Scholar 

  28. L. A. Utracki, “Commercial Polymer Blends”, Kluwer Academics Publisher, The Netherlands, 2003.

    Google Scholar 

  29. W. A. Zisman, Ind. Eng. Chem. Prod. R.D., 8, 98 (1969).

    Article  CAS  Google Scholar 

  30. M. C.-Y. Niu, “Composite Airframe Structures: Practical Design Information and Data”, Conmilit Press, Hong Kong, 1996.

    Google Scholar 

  31. A. C. Balazs, T. Emrick, and T. P. Russell, Science, 314, 1107 (2006).

    Article  CAS  Google Scholar 

  32. M. Zappalorto, M. Salviato, and M. Quaresimin, Int. J. Fract., 176, 105 (2012).

    Article  CAS  Google Scholar 

  33. J. A. Kim, D. G. Seong, T. J. Kang, and J. R. Youn, Carbon, 44, 1898 (2006).

    Article  CAS  Google Scholar 

  34. P. Harisankar, Y. V. Mohana Reddy, and K. Hemachandra Reddy, International Letters of Chemistry, Physics and Astronomy, 18, 75 (2014).

    Google Scholar 

  35. S. A. Meguid and Y. Sun, Mater. Des., 25, 289 (2004).

    Article  CAS  Google Scholar 

  36. J. Spanoudakis and R. J. Young, J. Mater. Sci., 19, 473 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Robert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gauvin, F., Cousin, P. & Robert, M. Improvement of the interphase between basalt fibers and vinylester by nano-reinforced post-sizing. Fibers Polym 16, 434–442 (2015). https://doi.org/10.1007/s12221-015-0434-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0434-x

Keywords

Navigation