Skip to main content
Log in

Nonlinear Multilayered Representation of Graph-Signals

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We propose a nonlinear multiscale decomposition of signals defined on the vertex set of a general weighted graph. This decomposition is inspired by the hierarchical multiscale (BV,L 2) decomposition of Tadmor, Nezzar, and Vese (Multiscale Model. Simul. 2(4):554–579, 2004). We find the decomposition by iterative regularization using a graph variant of the classical total variation regularization (Rudin et al, Physica D 60(1–4):259–268, 1992). Using tools from convex analysis, and in particular Moreau’s identity, we carry out the mathematical study of the proposed method, proving the convergence of the representation and providing an energy decomposition result. The choice of the sequence of scales is also addressed. Our study shows that the initial scale can be related to a discrete version of Meyer’s norm (Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, 2001) which we introduce in the present paper. We propose to use the recent primal-dual algorithm of Chambolle and Pock (J. Math. Imaging Vis. 40:120–145, 2011) in order to compute both the minimizer of the graph total variation and the corresponding dual norm. By applying the graph model to digital images, we investigate the use of nonlocal methods to the multiscale decomposition task. Since the only assumption needed to apply our method is that the input data is living on a graph, we are also able to tackle the task of adaptive multiscale decomposition of irregularly sampled data sets within the same framework. We provide in particular examples of 3-D irregular meshes and point clouds decompositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. A very preliminary version of this work was published in [24].

  2. Star as a superscript denotes the convex conjugate function while star as a subscript denotes the dual norm.

  3. By a trivial decomposition we mean the decomposition f=u+v where \(u=\overline{f}\) is the vector whose all components are equal to the mean of f.

  4. The model is taken from the sample dataset of the Cyberware Head & Face Color 3D Scanner available at: http://www.cyberware.com/.

References

  1. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123, 199–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arias, P., Caselles, V., Sapiro, G.: A variational framework for non-local image inpainting. In: Energy Minimization Methods in Computer Vision and Pattern Recognition. LNCS, vol. 5681, pp. 345–358 (2009)

    Chapter  Google Scholar 

  3. Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22, 71–88 (2005)

    Article  Google Scholar 

  4. Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63(1), 85–104 (2005)

    Article  MathSciNet  Google Scholar 

  5. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  6. Bougleux, S., Elmoataz, A., Melkemi, M.: Discrete regularization on weighted graphs for image and mesh filtering. In: Scale Space and Variational Methods in Computer Vision. LNCS, vol. 4485, pp. 128–139 (2007)

    Chapter  Google Scholar 

  7. Buades, A., Coll, B., Morel, J.M.: Image denoising methods. A new non-local principle. SIAM Rev. 52(1), 113–147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candes, E.J., Romberg, J.K.: Signal Recovery from Random Projections, pp. 76–86. SPIE, Bellingham (2005)

    Google Scholar 

  9. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  10. Chambolle, A.: Total variation minimization and a class of binary mrf models. In: Energy Minimization Methods in Computer Vision and Pattern Recognition. LNCS, vol. 3757, pp. 136–152 (2005)

    Chapter  Google Scholar 

  11. Chambolle, A., De Vore, R., Lee, N.Y., Lucier, B.: Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7(3), 319–335 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  14. Chan, R., Chan, T., Yip, A.: Numerical methods and applications in total variation image restoration. In: Handbook of Mathematical Methods in Imaging, pp. 1059–1094. Springer, Berlin (2011)

    Chapter  Google Scholar 

  15. Chan, T., Osher, S., Shen, J.: The digital TV filter and nonlinear denoising. IEEE Trans. Image Process. 10(2), 231–241 (2001)

    Article  MATH  Google Scholar 

  16. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, vol. 49, pp. 185–212. Springer, Berlin (2011)

    Chapter  Google Scholar 

  18. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Daubechies, I., Fornasier, M., Loris, I.: Accelerated projected gradient method for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl. 14, 764–792 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Elmoataz, A., Lézoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Process. 17(7), 1047–1060 (2008)

    Article  MathSciNet  Google Scholar 

  21. Fadili, J., Peyré, G.: Total variation projection with first order schemes. IEEE Trans. Image Process. 20(3), 657–669 (2011)

    Article  MathSciNet  Google Scholar 

  22. Getreuer, P.: Image zooming with contour stencils. In: Proceedings of SPIE, vol. 7246 (2009)

    Google Scholar 

  23. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hidane, M., Lézoray, O., Ta, V.T., Elmoataz, A.: Nonlocal multiscale hierarchical decomposition on graphs. In: Computer Vision ECCV 2010. LNCS, vol. 6314, pp. 638–650 (2010)

    Chapter  Google Scholar 

  25. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  26. Lézoray, O., Ta, V.T., Elmoataz, A.: Partial differences as tools for filtering data on graphs. Pattern Recognit. Lett. 31(14), 2201–2213 (2010)

    Article  Google Scholar 

  27. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  28. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  29. Mohar, B.: The Laplacian spectrum of graphs. Graph Theory Comb. Appl. 2(6), 871–898 (1991)

    MathSciNet  Google Scholar 

  30. Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris Sér. A Math. 255, 2897–2899 (1962)

    MathSciNet  MATH  Google Scholar 

  31. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  32. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H −1 norm. Multiscale Model. Simul. 1(3), 349–370 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pauly, M., Kobbelt, L.P., Gross, M.: Point-based multiscale surface representation. ACM Trans. Graph. 25(2), 177–193 (2006)

    Article  Google Scholar 

  35. Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: Computer Vision ECCV 2008. LNCS, vol. 5304, pp. 57–68 (2008)

    Chapter  Google Scholar 

  36. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  37. Scherzer, O., Groetsch, C.: Inverse scale space theory for inverse problems. In: Scale-Space and Morphology in Computer Vision. LNCS, vol. 2106, pp. 317–325 (2006)

    Chapter  Google Scholar 

  38. Strong, D.M., Aujol, J.F., Chan, T.F.: Scale recognition, regularization parameter selection, and Meyer’s g norm in total variation regularization. Multiscale Model. Simul. 5(1), 273–303 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tadmor, E., Nezzar, S., Vese, L.: A multiscale image representation using hierarchical (BV,L 2) decompositions. Multiscale Model. Simul. 2(4), 554–579 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tadmor, E., Nezzar, S., Vese, L.: Multiscale hierarchical decomposition of images with applications to deblurring, denoising and segmentation. Commun. Math. Sci. 6(2), 281–307 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19, 553–572 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Weickert, J.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner, Leipzig (1998)

    MATH  Google Scholar 

  43. Yun, S., Woo, H.: Linearized proximal alternating minimization algorithm for motion deblurring by nonlocal regularization. Pattern Recognit. 44(6), 1312–1326 (2011)

    Article  MATH  Google Scholar 

  44. Zhou, D., Schölkopf, B.: Regularization on discrete spaces. In: Pattern Recognition. LNCS, vol. 3663, pp. 361–368 (2005)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jalal Fadili for advices and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Hidane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidane, M., Lézoray, O. & Elmoataz, A. Nonlinear Multilayered Representation of Graph-Signals. J Math Imaging Vis 45, 114–137 (2013). https://doi.org/10.1007/s10851-012-0348-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0348-9

Keywords

Navigation