Skip to main content
Log in

Small Baseline Stereovision

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper presents a study of small baseline stereovision. It is generally admitted that because of the finite resolution of images, getting a good precision in depth from stereovision demands a large angle between the views. In this paper, we show that under simple and feasible hypotheses, small baseline stereovision can be rehabilitated and even favoured. The main hypothesis is that the images should be band limited, in order to achieve sub-pixel precisions in the matching process. This assumption is not satisfied for common stereo pairs. Yet, this becomes realistic for recent spatial or aerian acquisition devices. In this context, block-matching methods, which had become somewhat obsolete for large baseline stereovision, regain their relevance. A multi-scale algorithm dedicated to small baseline stereovision is described along with experiments on small angle stereo pairs at the end of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, L., Deriche, R., Sanchez, J., Weickert, J.: Dense Disparity Map Estimation Respecting Image Discontinuities: A PDE and Scale-Space Based Approach. INRIA (2000)

  2. Camlong, N.: Description de l’algorithme MARC (Multiresolution Algorithm to Refine Correlation). Report CSSI/111-1/COR-ET-MARC-2, CNES (2001)

  3. Carfantan, E., Rougé, B.: Estimation non biaisée de décalages subpixellaires sur les images SPOT. In: GRESTSI’01 on Signal and Image Processing, Toulouse (2001)

  4. Cox, I.J., Hingorani, S.L., Rao, S.B., Maggs, B.M.: A maximum likelihood stereo algorithm. Comput. Vis. Image Underst. 63(3), 542–567 (1996)

    Article  Google Scholar 

  5. Delon, J., Rougé, B.: Le phénomène d’adhérence en stéréoscopie dépendant du critère de corrélation. In: GRESTSI’01 on Signal and Image Processing, Toulouse (2001)

  6. Faugeras, O., Hotz, B., Metthieu, H., Vieville, T., Zhang, Z., Fua, P., Theron, E., Moll, L., Berry, G., Vuillemin, J., Bertin, P., Proy, C.: Real-time correlation based stereo: algorithm, implementations and applications. Research report INRIA-2013 (1993)

  7. Faugeras, O., Luong, Q.-T.: The Geometry of Multiple Images. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  8. Giros, A., Rougé, B., Vadon, H.: Appariement fin d’images stéréoscopiques et instrument dédié avec un faible coefficient stéréoscopique. French Patent N° 0403143, March 2004

  9. Jones, D.G., Malik, J.: A computational framework for determining stereo correspondence from a set of linear spatial filters. In: Lecture Notes in Computer Science, vol. 588, pp. 395–410 (1992)

  10. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: IEEE International Conference on Computer Vision (ICCV), July 2001

  11. Muron, V.: Manuel utilisateur de la chaîne de calcul de décalages entre images par l’algorithme MARC. Report CSSI/111-1/COR-ET-MARC-5, CNES (2003)

  12. Ohta, Y., Kanade, T.: Stereo by intra-scaline search using dynamic programming. IEEE Trans Pattern Anal Mache Intelligence 7, 139–154 (1985)

    Article  Google Scholar 

  13. Palmer, S.E.: Stereoscopic information. In: Vision Science: Photon to Phenomenology, pp. 206–221. Bradford Book (1999)

  14. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

    Article  MATH  Google Scholar 

  15. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  16. Shannon, C.E.: Communication in the presence of noise. In: Proceedings of the Institution of Radio Engineers, vol. 37, pp. 10–21 (1949)

  17. Sun, J., Zheng, N., Shum, H.: Stereo matching using belief propagation. IEEE Trans. Pattern Anal. Mach. Intell. 25(7), 787–800 (2003)

    Article  Google Scholar 

  18. Szeliski, R., Scharstein, D.: Sampling the disparity space image. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 419–425 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Delon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delon, J., Rougé, B. Small Baseline Stereovision. J Math Imaging Vis 28, 209–223 (2007). https://doi.org/10.1007/s10851-007-0001-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0001-1

Keywords

Navigation