Skip to main content
Log in

Resolving the Infinitude Controversy

  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

Abstract

A simple inductive argument shows natural languages to have infinitly many sentences, but workers in the field have uncovered clear evidence of a diverse group of ‘exceptional’ languages from Proto-Uralic to Dyirbal and most recently, Pirahã, that appear to lack recursive devices entirely. We argue that in an information-theoretic setting non-recursive natural languages appear neither exceptional nor functionally inferior to the recursive majority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. According to some, “in human language communications, the probability of an utterance varies from situation to situation, moment to moment: if an elephant appears on the university campus, this affects the probability of ‘elephant’-utterances, threatening the empirical basis of (3)” This view rests on a confusion between the probability value and the method of sampling: clearly average human height is not at all affected by the fact whether we use the basketball team or the kindergarten as our sample, it’s just that neither sample is very representative.

References

  • Anderson, S. R. (1985). Phonology in the twentieth century: Theories of rules and theories of representations. Chicago: University of Chicago Press.

    Google Scholar 

  • Baer, M. (2013). A simple countable infinite-entropy distribution. ms. Accessed July, 2013 from https://hkn.eecs.berkeley.edu/~calbear/research/Hinf.pdf.

  • Bartlett, T. (2012, March 20). Angry words. Chronicle of Higher Education.

  • Brants, T., & Franz, A. (2006). Web 1T 5-gram Version 1. Philadelphia: Linguistic Data Consortium.

    Google Scholar 

  • Brown, P., Pietra, S. D., Pietra, V. D., Lai, J., & Mercer, R. (1992). An estimate of an upper bound for the entropy of English. Computational Linguistics, 18(1), 31–40.

    Google Scholar 

  • Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.

    Google Scholar 

  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.

  • Derbyshire, D. (1979). Hixkaryana. Lingua descriptive series 1.

  • Dixon, R. M. (1972). The Dyirbal language of North Queensland. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Magyar Tudományos Akadémia Matematikai Kutató., 5, 17–61.

    Google Scholar 

  • Everett, D. (2009). Pirahã culture and grammar: A response to some criticism. Language, 85(2), 405–442.

    Article  Google Scholar 

  • Francis, W. N., & Kučera, H. (1982). Frequency analysis of English usage. Boston: Houghton Mifflin.

    Google Scholar 

  • Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how does it evolve? Science, 298, 1569–1579.

    Article  Google Scholar 

  • Jackendoff, R., & Pinker, S. (2005). The nature of the language faculty and its implications for evolution of language (reply to Fitch, Hauser, and Chomsky). Cognition, 97, 211–225.

    Article  Google Scholar 

  • Jaeger, T. F. (2010). Redundancy and reduction: Speakers manage syntactic information density. Cognitive Psychology, 61, 23–62.

    Article  Google Scholar 

  • Kornai, A. (2002). How many words are there? Glottometrics, 2(4), 61–86.

    Google Scholar 

  • Kornai, A. (2008). Mathematical linguistics. Berlin: Springer.

    Book  Google Scholar 

  • Lakoff, R. (1968). Abstract syntax and Latin complementation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Langendoen, T. (1981). The generative capacity of word-formation components. Linguistic Inquiry, 12(2), 320–322.

    Google Scholar 

  • Levy, R., & Jaeger, T. (2007). Speakers optimize information density through syntactic reduction. Advances in Neural Information Processing Systems, 19, 849–856.

    Google Scholar 

  • Łuczak, T., & Seierstad, T. G. (2009). The critical behavior of random digraphs. Random Structures and Algorithms, 35, 271–293.

    Article  Google Scholar 

  • Nevins, A., Pesetsky, D., & Rodrigues, C. (2009). Piraha exceptionality: A reassessment. Language, 85(2), 355–404.

    Article  Google Scholar 

  • Padellini, M., Capman, F., & Baudoin, G. (2004). Very low bit rate (VLBR) speech coding around 500 bits/sec. In Proceedings of the XII. European signal processing conference, pp. 1669–1672.

  • Piantadosi, S.T., Stearns, L., Everett, D.L., & Gibson, E. A. (2012). Corpus analysis of Pirahã grammar: An investigation of recursion. LSA annual meeting. Accessed December, 2013 http://tedlab.mit.edu/tedlab_website/researchpapers/Piantadosi_et_al_2012_LSAtalk_Piraha.pdf.

  • Pullum, G. K., & Scholz, B. C. (2010). Recursion and the infinitude claim. In H. van der Hulst (Ed.), Recursion in human language (studies in generative grammar) (pp. 113–138). Berlin: Mouton de Gruyter.

    Google Scholar 

  • Ravila, P. (1960). Proto-Uralic. In B. Collinder (Ed.), Comparative grammar of the Uralic languages (pp. 250–251). Stockholm: Almqvist and Wiksell.

  • Sauerland, U. (2012). Experimental evidence for complex syntax in Pirahã. Accessed July, 2012 from http://ling.auf.net/lingBuzz/001095.

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423, 623–656.

  • Tomalin, M. (2011). Syntactic structures and recursive devices: A legacy of imprecision. Journal of Logic, Language, and Information, 20, 297–315.

    Article  Google Scholar 

  • Watumull, J., Hauser, M. D., Roberts, I. G., & Hornstein, N. (2014). On recursion. Frontiers in Psychology, 4, 1–7.

    Article  Google Scholar 

  • Zséder, A., Recski, G., Varga, D., & Kornai, A. (2012). Rapid creation of large-scale corpora and frequency dictionaries. In Proceedings to LREC 2012, pp. 1462–1465.

Download references

Acknowledgments

We thank Geoff Pullum, Christina Behme, and the anonymous referees for detailed comments on earlier versions. Work supported by OTKA Grants #82333 and 77476 and by the European Union and the European Social Fund through project FuturICT.hu (Grant Number TAMOP-4.2.2.C-11/1/KONV-2012-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Kornai.

Additional information

For Marcus Kracht on his 50th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornai, A. Resolving the Infinitude Controversy. J of Log Lang and Inf 23, 481–492 (2014). https://doi.org/10.1007/s10849-014-9203-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-014-9203-2

Keywords

Navigation