Skip to main content
Log in

Oligoboroxine-based architectures

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Boroxines are well-known six-membered ring compounds and their fundamental properties such as aromaticity, Lewis acidity, photophysical property, interactions with anions, thermal stability, and reactivity have been investigated. Since the 2000s, boroxine formation has been paid much attention as a reversible covalent bond formation. Boronic acids (RB–(OH)2) reversibly trimerize to afford the tripodal structure of boroxines. The equilibrium between boronic acids and boroxines can be controlled simply by the addition or removal of water. The addition of N-donor Lewis bases also promotes the reversible formation of boroxine⋅N-donor Lewis base adducts. To date, by using this unique reversible trimerization, various self-assembled boroxine-based covalent architectures and polymeric materials have been reported. Boroxine-based architectures are categorized into three types as follows. (a) Tripodal structures by monoboroxine formation, (b) network structures by polyboroxine formation including covalent organic frameworks (= COFs) and dynamic polymer materials, and (c) discrete structures by oligoboroxine formation. Compared to mono or polyboroxine-based architectures (a) or (b), oligoboroxine-based discrete architectures (c) containing a precise number of boroxines are an emerging research subject and have the potential to create a novel type of discrete covalent architectures. Thus, in this review, we summarize recent progress including our works in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lappert, M.F.: Organic compounds of boron. Chem. Rev. 56, 959–1064 (1956)

    Article  CAS  Google Scholar 

  2. Hall, D.G. (ed.): Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd edn. Wiley-VCH, Weinheim (2011)

  3. Snyder, H.R., Kuck, J.A., Johnson, J.R.: Organoboron compounds, and study of reaction mechanisms. Primary aliphatic boronic acids. J. Am. Chem. Soc. 60, 105–111 (1938)

    Article  CAS  Google Scholar 

  4. Cooper, D.L., Wright, S.C.: The electronic structure of heteroaomatic molecules. Part 3. A comparison of benzene, borazine, and boroxine. J. Chem. Soc. Perkin Trans. 2, 719–724 (1989)

    Article  Google Scholar 

  5. Archibong, E.F., Thakkar, A.J.: Polarizabilities of aromatic six-membered rings: azines and ‘inorganic benzenes.’ Mol. Phys. 81, 557–567 (1994)

    Article  CAS  Google Scholar 

  6. Fowler, P.W., Steiner, E.: Ring currents and aromaticity of monocyclic π-systems C6H6, B3N3H6, B3O3H3, C3N3H3, C5H5, C7H7+, C3N3F3, and C6H6. J. Phys. Chem. A. 101, 1409–1413 (1997)

  7. Schleyer, P.R., Jiao, H., Hommes, N.J.R.E., Malkin, V.G., Malkin, O.L.: An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties. J. Am. Chem. Soc. 119, 12669–12670 (1997)

    Article  CAS  Google Scholar 

  8. Lamb, D.W., Keir, R.I., Ritchie, L.D.: Polarizability and magnetizability anisotropies of trimethylboroxine, Me3B3O3. Comparison of boroxine and benzene ring systems. Chem. Phys. Lett. 291, 197–207 (1998)

    Article  CAS  Google Scholar 

  9. Gillespie, R.J., Bytheway, I., Robinson, E.A.: Bond length and bond angles in oxo, hydroxo, and alkoxo molecules of Be, B, and C: a close-packed nearly ionic model. Inorg. Chem. 37, 2811–2815 (1998)

    Article  CAS  PubMed  Google Scholar 

  10. Beckmann, J., Dakternieks, D., Duthie, A., Lim, A.E.K., Tiekink, E.R.T.: Ring strain in boroxine rings: computational and experimental considerations. J. Organomet. Chem. 633, 149–156 (2001)

    Article  CAS  Google Scholar 

  11. Haberecht, M.C., Bolte, M., Wagner, M., Lerner, H.-W.: A new polymorph of tri(p-tolyl)boroxine. J. Chem. Crystallogr. 35, 657–665 (2005)

    Article  CAS  Google Scholar 

  12. Beckett, M.A., Brassington, D.S., Owen, P., Hursthouse, M.B., Light, M.E., Malik, K.M.A., Varma, K.S.: π-bonding in B-O ring species: Lewis acidity of Me3B3O3, synthesis of amine Me3B3O3 adducts, and the crystal and molecular structure of Me3B3O3·NH2iBu·MeB(OH)2. J. Organomet. Chem. 585, 7–11 (1999)

  13. Beckett, M.A., Strickland, G.C., Varma, K.S., Hibbs, D.E., Hursthouse, M.B., Malik, K.M.A.: Amine adducts of triarylboroxines: synthesis and characterization of adducts of tri(2-tolyl)boroxine and crystal structures of (4-MeC6H4)B3O3 and (4-MeC6H4)3B3O3⋅4-picoline. J. Organomet. Chem. 535, 733–741 (1997)

    Article  Google Scholar 

  14. Yalpani, M., Boese, R.: The structure of amine adducts of triorganylboroxines. Chem. Ber. 116, 3347–3358 (1983)

    Article  CAS  Google Scholar 

  15. Ferguson, G., Lough, A.J., Sheehan, J.P., Spalding, T.R.: Structure of the triphenylboroxin-N, N-dimethylethylenediamine 1:1 adduct. Acta Crystallogr. Sect. C 46, 2390–2392 (1990)

  16. Beckett, M.A., Strickland, G.C., Varma, K.S., Hibbs, D.E., Hursthouse, M.B., Malik, K.M.A.: Synthesis and characterization of amine adducts of tri(4-tolyl)boroxine and tri(3,5-xylyl)boroxine: molecular structure of (4-MeC6H4)4B3O3⋅cyclohexylamine. Polyhedron 14, 2623–2630 (1990)

    Article  Google Scholar 

  17. Norrild, J.C., Søtofte, I.: Design, synthesis and structure of new potential electrochemically active boronic acid-base glucose sensors. J. Chem. Soc. Perkin Trans. 2, 303–311 (2002)

    Article  CAS  Google Scholar 

  18. Giles, R.L., Howard, A.K., Patrick, L.G.F., Probert, M.R., Smith, G.E., Whiting, A.: Synthesis and structure of potential Lewis acid-Lewis base bifunctional catalysts: 1-N, N-dimethylamino-8-borononaphthalene derivatives. J. Organomet. Chem. 680, 257–262 (2003)

    Article  CAS  Google Scholar 

  19. Zhu, L., Shabbir, S.H., Gray, M., Lynch, V.M., Sorey, S., Anslyn, E.V.: A structural investigation of the N-B interaction in an o-(N, N-dialkylaminomethyl)arylboronate system. J. Am. Chem. Soc. 128, 1222–1232 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Höpfl, H.: The tetrahedral character of the boron atom newly defined: a useful tool to evaluate the N-B bond. J. Organomet. Chem. 581, 129–149 (1999)

    Article  Google Scholar 

  21. Toyota, S., Oki, M.: Structure of intramolecular boron-amine complexes and proposal of tetrahedral character for correlation between molecular structure and barrier to dissociation of the N-B bonds. Bull. Chem. Soc. Jpn. 65, 1832–1840 (1992)

    Article  CAS  Google Scholar 

  22. Farfán, N., Contreras, R.: Carbon-13 nuclear magnetic resonance spectroscopy as a method to determine relative acidity of boron Lewis acids in pyridine complexes. J. Chem. Soc. Perkin Trans. 2, 771–773 (1987)

    Article  Google Scholar 

  23. Gutmann, V.: Solvent effects on the reactivities of organometallic compounds. Coord. Chem. Rev. 18, 225–255 (1976)

    Article  CAS  Google Scholar 

  24. Mayer, U., Gutmann, V., Gerger, W.: The acceptor number - a quantitative empirical parameter for the electrophilic properties of solvents. Monatshefte fur Chemie 106, 1235–1257 (1975)

    Article  CAS  Google Scholar 

  25. Beckett, M.A., Strickland, G.C., Holland, J.R., Varma, K.S.: A convenient n.m.r. method for the measurement of Lewis acidity at boron centres: correlation of reaction rates of Lewis acid initiated epoxide polymerizations with Lewis acidity. Polymer 37, 4629–4631 (1996)

    Article  CAS  Google Scholar 

  26. Turro, N.J., Ramamurthy, V., Scaianon, J.C.: Modern Molecular Photochemistry of Organic Molecules. University Science Books, Sausalito (2010)

    Google Scholar 

  27. Shoji, Y., Ikabata, Y., Wang, Q., Nemoto, D., Sakamoto, A., Tanaka, N., Seino, J., Nakai, H., Fukushima, T.: Unveiling a new aspect of simple arylboronic esters: long-lived room-temperature phosphorescence from heavy-atom-free molecules. J. Am. Chem. Soc. 139, 2728–2733 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. Wu, Q.G., Wu, G., Brancaleon, L., Wang, S.: B3O3Ph3(7-azaindole): structure, luminescence, and fluxionality. Organometallics 18, 2553–2556 (1999)

    Article  CAS  Google Scholar 

  29. Korich, A.L., Walker, A.R., Hincke, C., Stevens, C., Iovine, P.M.: Synthesis, characterization, and star polymer assembly of boronic acid end-functionalized polycaprolactone. J. Polym. Sci. Part A 48, 5767–5774 (2010)

    Article  CAS  Google Scholar 

  30. Mascal, M.: Precedent and theory unite in hypothesis of a highly selective fluoride receptor. Angew. Chem. Int. Ed. 45, 2890–2893 (2006)

    Article  CAS  Google Scholar 

  31. Bauzá, A., Quiñonero, D., Deyà, P.M., Frontera, A.: Theoretical ab initio study of anion-π interactions in inorganic rings. Chem. Phys. Lett. 530, 145–150 (2012)

  32. Yang, Y., Inoue, T., Fujinami, T., Mehta, M.A.: Ionic conductivity and interfacial properties of polymer electrolytes based on PEO and boroxine ring polymer. J. Appl. Polym. Sci. 84, 17–21 (2002)

    Article  CAS  Google Scholar 

  33. Nair, N.G., Blanco, M., West, W., Weise, F.C., Greenbaum, S., Reddy, V.P.: Fluorinated boroxine- based anion receptors for lithium ion batteries: fluoride anion binding, ab initio calculations, and ionic conductivity studies. J. Phys. Chem. A 113, 5918–5926 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. Morgan, A.B., Jurs, J.L., Tour, J.M.: Synthesis, flame-retardancy testing, and preliminary mechanism studies of nonhalogenated aromatic boronic acids: a new class of condensed-phase polymer flame-retardant additives for acrylonitrile-butadiene-styrene and polycarbonate. J. Appl. Polym. Sci. 76, 1257–1268 (2000)

    Article  CAS  Google Scholar 

  35. Chen, S., Ai, L., Zeng, J., Liu, P.: Synergistic flame-retardant effect of an aryl boronic acid compound and ammonium polyphosphate on epoxy resins. ChemistrySelect 4, 9677–9682 (2019)

    Article  CAS  Google Scholar 

  36. Sana, M., Leroy, G., Wilante, C.: Enthalpies of formation and bond energies in lithium, beryllium, and boron derivatives. A theoretical attempt for data rationalization. Organometallics 10, 264–270 (1991)

    Article  CAS  Google Scholar 

  37. Tokunaga, Y., Ueno, Y., Shimomura, Y., Seo, T.: Formation of boroxine: its stability and thermodynamic parameters in solution. Heterocycles 57, 787–790 (2002)

    Article  CAS  Google Scholar 

  38. Kua, K., Iovine, P.M.: Formation of para-substituted triphenylboroxines: a computational study. J. Phys. Chem. A 109, 8938–8943 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. Adamczyk-Woźniak, A., Kaczorowska, E., Kredátusova, J., Madura, I., Marek, P.H., Matuszewska, A., Sporzynński, A., Uchman, M.: Dehydration of ortho-, meta- and para-alkoxy phenylboronic acids to their corresponding boroxines. Eur. J. Inorg. Chem. 2018, 1492–1498 (2018)

    Article  CAS  Google Scholar 

  40. De, P., Gondi, S.R., Roy, D., Sumerlin, B.S.: Boronic acid-terminated polymers: synthesis by RAFT and subsequent supramolecular and dynamic covalent self-assembly. Macromolecules 42, 5614–5621 (2009)

    Article  CAS  Google Scholar 

  41. Perttu, E.K., Arnold, M., Iovine, P.M.: The synthesis and characterization of phenylacetylene tripodal compounds containing boroxine cores. Tetrahedron Lett. 46, 8753–8756 (2005)

    Article  CAS  Google Scholar 

  42. Qin, Y., Cui, C., Jäkle, F.: Silylated initiators for the efficient preparation of borane-end-functionalized polymers via ATRP. Macromolecules 40, 1413–1420 (2007)

    Article  CAS  Google Scholar 

  43. Kua, J., Fletcher, M.N., Iovine, P.M.: Effects of para-substituents and solvent polarity on the formation of triphenylboroxine⋅amine adducts. J. Phys. Chem. A 110, 8158–8166 (2006)

  44. Kua, J., Gyselbrecht, C.R.: Favoring heterotrimeric boroxine formation using an internal Lewis base: a computational study. J. Phys. Chem. A 112, 9128–9133 (2008)

    Article  CAS  PubMed  Google Scholar 

  45. Iovine, P.M., Gyselbrecht, C.R., Perttu, E.K., Klick, C., Neuwelt, A., Loera, J., DiPasquale, A.G., Rheingold, A.L., Kua, J.: Hetero-arylboroxines: the first rational synthesis, x-ray crystallographic and computational analysis. Dalton Trans. 29, 3791–3794 (2008)

    Article  CAS  Google Scholar 

  46. Tokunaga, Y., Ito, T., Sugawara, H., Nakata, R.: Dynamic covalent chemistry of a boronylammonium ion and a crown ether: formation of a C3-symmetric [4]rotaxane. Tetrahedron Lett. 49, 3449–3452 (2008)

    Article  CAS  Google Scholar 

  47. Alcaraz, G., Euzenat, L., Mongin, O., Katan, C., Ledoux, I., Zyss, J., Blanchard-Desce, M., Vaultier, M.: Improved transparency-nonlinearity trade-off with boroxine-based octupolar molecules. Chem. Commun. 22, 2766–2767 (2003)

    Article  Google Scholar 

  48. Ishikawa, K., Kameta, N., Masuda, M., Asakawa, M., Shimizu, T.: Boroxine nanotubes: moisture-sensitive morphological transformation and guest release. Adv. Funct. Mater. 24, 603–609 (2014)

    Article  CAS  Google Scholar 

  49. Wöhrle, T., Baro, A., Laschat, S.: Novel discotic boroxines: synthesis and mesomorphic properties. Materials 7, 4045–4056 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wöhrle, T., Taing, H., Schilling, C., Eichhorn, S.H., Laschat, S.: Phase behaviour of star-shaped binary mixtures of triphenylbenzenes, triphenylboroxines and triphenyltriazines. Liq. Cryst. 46, 1973–1984 (2019)

    Article  CAS  Google Scholar 

  51. Côté, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J., Yaghi, O.M.: Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005)

    Article  PubMed  CAS  Google Scholar 

  52. El-Kaderi, H.M., Hunt, J.R., Mendoza-Cortés, J.L., Côté, A.P., Taylor, R.E., O’Keeffe, M., Yaghi, O.M.: Designed synthesis of 3D covalent organic frameworks. Science 316, 268–272 (2007)

    Article  CAS  PubMed  Google Scholar 

  53. Ding, S.-Y., Wang, W.: Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42, 548–568 (2013)

    Article  CAS  PubMed  Google Scholar 

  54. Das, S., Heasman, P., Ben, T., Qiu, S.: Porous organic materials: strategic design and structure-function correlation. Chem. Rev. 117, 1515–1563 (2017)

    Article  CAS  PubMed  Google Scholar 

  55. Cui, D., Perepichka, D.F., MacLeod, J.M., Rosei, F.: Surface-confined single-layer covalent organic frameworks: design, synthesis and application. Chem. Soc. Rev. 49, 2020–2038 (2020)

    Article  CAS  PubMed  Google Scholar 

  56. Lai, J.-C., Mei, J.-F., Jia, X.-Y., Li, C.-H., You, X.-Z., Bao, Z.: A stiff and healable polymer based on dynamic-covalent boroxine bonds. Adv. Mater. 28, 8277–8282 (2016)

    Article  CAS  PubMed  Google Scholar 

  57. Delpierre, S., Willocq, B., Winter, J.D., Dubois, P., Gerbaux, P., Raquez, J.-M.: Dynamic iminoboronate-based boroxine chemistry for the design of ambient humidity-sensitive self-healing polymers. Chem. Eur. J. 23, 6730–6735 (2017)

    Article  CAS  PubMed  Google Scholar 

  58. Bao, C., Jiang, Y.-J., Zhang, H., Lu, X., Sun, J.: Room-temperature self-healing and recyclable tough polymer composites using nitrogen-coordinated boroxines. Adv. Funct. Mater. 28, 1800560 (2018)

    Article  CAS  Google Scholar 

  59. Ogden, W.A., Guan, Z.: Recyclable, strong, and highly malleable thermosets based on boroxine networks. J. Am. Chem. Soc. 140, 6217–6220 (2018)

    Article  CAS  PubMed  Google Scholar 

  60. Delpierre, S., Willocq, B., Manini, G., Lemaur, V., Goole, J., Gerbaux, P., Cornil, J., Dubois, P., Raquez, J.-M.: Simple approach for a self-healable and stiff polymer network from iminoboronate-based boroxine chemistry. Chem. Mater. 31, 3736–3744 (2019)

    Article  CAS  Google Scholar 

  61. Guo, Q., Huang, B., Lu, C., Zhou, T., Su, G., Jia, L., Zhang, X.: A cephalopod-inspired mechanoluminescence material with skin-like self-healing and sensing porperties. Mater. Horiz. 6, 996–1004 (2019)

    Article  CAS  Google Scholar 

  62. Korich, A.L., Iovine, P.M.: Boroxine chemistry and applications: a perspective. Dalton Trans. 39, 1423–1431 (2010)

    Article  CAS  PubMed  Google Scholar 

  63. Tokunaga, Y.: Boroxine chemistry: from fundamental studies to applications in supramolecular and synthetic organic chemistry. Heterocycles 87, 991–1021 (2013)

    Article  CAS  Google Scholar 

  64. Mellerup, S.K., Wang, S.: Boron-based stimuli responsive materials. Chem. Soc. Rev. 48, 3537–3549 (2019)

    Article  CAS  PubMed  Google Scholar 

  65. Bapat, A.P., Sumerlin, B.S., Sutti, A.: Bulk network polymers with dynamic B-O bonds: healable and reprocessable materials. Mater. Horiz. 7, 694–714 (2020)

    Article  CAS  Google Scholar 

  66. Chen, T.H., Kaveevivitchai, W., Bui, N., Miljanić, O.Š: Triply ferrocene-bridged boroxine cyclophane. Chem. Commun. 48, 2855–2857 (2012)

    Article  CAS  Google Scholar 

  67. Thilagar, P., Chen, J., Lalancette, R.A., Jäkle, F.: Reversible formation of a planar chiral ferrocenylboroxine and its supramolecular structure. Organometallics 30, 6734–6741 (2011)

    Article  CAS  Google Scholar 

  68. Tranchemontagne, D.J., Ni, Z., O’Keeffe, M., Yaghi, O.M.: Reticular chemistry of metal-organic polyhedra. Angew. Chem. Int. Ed. 47, 5136–5147 (2008)

    Article  CAS  Google Scholar 

  69. Harris, K., Fujita, D., Fujita, M.: Giant hollow MnL2n spherical complexes: structure, functionalization and applications. Chem. Commun. 49, 6703 (2013)

    Article  CAS  Google Scholar 

  70. Salazar-Mendoza, D., Guerrero-Alvarez, J., Höpfl, H.: 3-Pyridineboronic acid → boroxine → pentadecanuclear boron cage → 3D molecular network: a sequence based on two levels of self-complementary self-assembly. Chem. Commun. 48, 6543–6545 (2008)

    Article  CAS  Google Scholar 

  71. Icli, B., Sheepwash, E., Johannessen, R.T., Schenk, K., Filinchuk, Y., Scopelliti, R., Severin, K.: Dative boron-nitrogen bonds in structural supramolecular chemistry: multicomponent assembly of prismatic organic cages. Chem. Sci. 2, 1719–1721 (2011)

    Article  CAS  Google Scholar 

  72. Ono, K., Johmoto, K., Yasuda, N., Uekusa, H., Fujii, S., Kiguchi, M., Iwasawa, N.: Self-assembly of nanometer-sized boroxine cages from diboronic acids. J. Am. Chem. Soc. 137, 7015–7018 (2015)

    Article  CAS  PubMed  Google Scholar 

  73. Ono, K.: Porous organic cage crystals. J. Synth. Org. Chem. Jpn. 70, 653 (2012)

    Article  CAS  Google Scholar 

  74. Little, M.A., Cooper, A.I.: The Chemistry of Porous Molecular Materials. Adv. Funct. Mater. 2020, 1909842 (2020)

    Article  CAS  Google Scholar 

  75. Ono, K., Shimo, S., Takahashi, K., Yasuda, N., Uekusa, H., Iwasawa, N.: Dynamic interconversion between boroxine cages based on pyridine ligation. Angew. Chem. Int. Ed. 57, 3113–3117 (2018)

    Article  CAS  Google Scholar 

  76. Ono, K., Iwasawa, N.: Dynamic behavior of covalent organic cages. Chem. Eur. J. 24, 17856–17868 (2018)

    Article  CAS  PubMed  Google Scholar 

  77. Park, S.J., Shin, D.M., Sakamoto, S., Yamaguchi, K., Chung, Y.K., Lah, M.S., Hong, J.-I.: Dynamic equilibrium between a supramolecular capsule and bowl generated by inter- and intramolecular metal clipping. Chem. Eur. J. 11, 235–241 (2005)

    Article  CAS  Google Scholar 

  78. Cullen, W., Hunter, C.A., Ward, M.D.: An interconverting family of coordination cages and a meso-helicate; effects of temperature, concentration, and solvent on the product distribution of a self-assembly process. Inorg. Chem. 54, 2626–2637 (2015)

    Article  CAS  PubMed  Google Scholar 

  79. Ros, S.D., Linden, A., Baldridge, K.K., Siegel, J.S.: Boronic esters of corannulene: potential building blocks toward icosahedral supramolecules. Org. Chem. Front. 2, 626–633 (2015)

    Article  Google Scholar 

  80. Eliseeva, M.N., Scott, L.T.: Pushing Ir-catalyzed C-H polyborylation of aromatic compounds to maximum capacity by exploiting reversibility. J. Am. Chem. Soc. 134, 15169–15172 (2012)

    Article  CAS  PubMed  Google Scholar 

  81. Wang, A., Zhao, M.: Intrinsic half-metallicity in fractal carbon nitride honeycomb lattices. Phys. Chem. Chem. Phys. 17, 21837–21844 (2015)

    Article  CAS  PubMed  Google Scholar 

  82. van Veen, E., Yuan, S., Katsnelson, M.I., Polini, M., Tomadin, A.: Quantum transport in Sierpinski carpets. Phys. Rev. B 93, 115428–115432 (2016)

    Article  CAS  Google Scholar 

  83. Mo, Y., Chen, T., Dai, J., Wang, D.: On-surface synthesis of highly ordered covalent Sierpinski triangle fractals. J. Am. Chem. Soc. 141, 11378–11382 (2019)

    Article  CAS  PubMed  Google Scholar 

  84. Guan, C.-Z., Wang, D., Wan, L.-J.: Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48, 2943–2945 (2012)

    Article  CAS  Google Scholar 

  85. Cui, D., Fang, Y., MacLean, O., Perepichka, D.F., Rosei, F., Clair, S.: Covalent organic frameworks from a monomer with reduced symmetry: polymorphism and Sierpinski triangles. Chem. Commun. 55, 13586–13589 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.O. greatly appreciates the committee members of Association of Research for Host–Guest and Supramolecular Chemistry (Japan) for awarding “SHGSC Japan Award of Excellence 2020”. The studies in this review were supported by a CREST (Core Research for Evolution Science and Technology) project from the Japan Science and Technology Agency (JST) and JSPS KAKENHI Grant Number 15H05800 and 25410087. The authors are also deeply grateful to all the group members who developed the studies in this review. This is a paper selected for the “SHGSC Japan Award of Excellence 2020”

Funding

Core Research for Evolution Science and Technology (CREST) project from the Japan Science and Technology Agency (JST). JSPS KAKENHI Grant Number 15H05800 and 25410087.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kosuke Ono or Nobuharu Iwasawa.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ono, K., Iwasawa, N. Oligoboroxine-based architectures. J Incl Phenom Macrocycl Chem 101, 19–29 (2021). https://doi.org/10.1007/s10847-021-01074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01074-6

Keywords

Navigation