Skip to main content
Log in

A mini review: supramolecular gels based on calix[4]arene derivatives

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Supramolecular gels, materials with reversible phase that respond to external stimuli, form via multiple noncovalent interactions of gelator/gelator or gelator/solvent. Calix[4]arene, with an adjustable cavity and multiple modified sites, enriches the properties of supramolecular gels. The synthesis and properties of calix[4]arene supramolecular gels will be discussed and reviewed. There are three methods for constructing calix[4]arene supramolecular gels: (1) using cation- or anion-directed and assisted calix[4]arene derivatives to build a gel network; (2) using a calix[4]arene derivative and another compound together to construct a binary supramolecular gel; and (3) forming a calix[4]arene derivative self-assembled gel network. Moreover, increased interest has been shown in the application of calix[4]arene supramolecular gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Echeverria, C., Fernandes, N.S., Godinho, H.M., Borges, P.J., Soares, P.I.P.: Functional stimuli-responsive gels: hydrogels and microgels. Gels. 4, 54 (2018)

    PubMed Central  Google Scholar 

  2. Mayr, J., Saldías, C., Díaz, D.D.: Release of small bioactive molecules from physical gels. Chem. Soc. Rev. 47, 1484–1515 (2018)

    CAS  PubMed  Google Scholar 

  3. Jones, C.D., Steed, J.W.: Gels with sense: supramolecular materials that respond to heat, light and sound. Chem. Soc. Rev. 45, 6546–6596 (2016)

    CAS  PubMed  Google Scholar 

  4. Okesola, B.O., Smith, D.K.: Applying low-molecular weight supramolecular gelators in an environmental setting-self-assembled gels as smart materials for pollutant removal. Chem. Soc. Rev. 45, 4226–4251 (2016)

    CAS  PubMed  Google Scholar 

  5. Feng, X., Liu, C., Wang, X., Jiang, Y., Yang, G., Wang, R., Zheng, K., Zhang, W., Wang, T., Jiang, J.: Functional supramolecular gels based on the hierarchical assembly of porphyrins and phthalocyanines. Front. Chem. 7, –336 (2019)

  6. Li, X., Kuang, Y., Shi, J., Gao, Y., Lin, H.C., Xu, B.: Multifunctional, biocompatible supramolecular hydrogelators consist only of nucleobase, amino acid, and glycoside. J. Am. Chem. Soc. 133, 17513–17518 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yan, N., Xu, Z., Diehn, K.K., Raghavan, S.R., Fang, Y., Weiss, R.G.: How do liquid mixtures solubilize insoluble gelators? Self-assembly properties of pyrenyl-linker-glucono gelators in tetrahydrofuran-water mixtures. J. Am. Chem. Soc. 135, 8989–8999 (2013)

    CAS  PubMed  Google Scholar 

  8. Xu, Y., Wu, Q., Sun, Y., Bai, H., Shi, G.: Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano. 4, 7358–7362 (2010)

    CAS  PubMed  Google Scholar 

  9. Zhang, H., Peng, H., Liu, K., Fang, Y.: Supramolecular gels of cholic acids and their derivatives. Prog. Chem. (China). 23, 1591–1596 (2011)

    CAS  Google Scholar 

  10. Makarević, J., Jokić, M., Perić, B., Tomišić, V., Kojić-Prodić, B., Žinić, M.: Bis(amino acid) oxalyl amides as ambidextrous gelators of water and organic solvents: supramolecular gels with temperature dependent assembly/dissolution equilibrium. Chem. Eur. J. 15, 3328–3341 (2001)

    Google Scholar 

  11. Yan, N., He, G., Zhang, H., Ding, L., Fang, Y.: Glucose-based fluorescent low-molecular mass compounds: creation of simple and versatile supramolecular gelators. Langmuir. 26, 5909–5917 (2010)

    CAS  PubMed  Google Scholar 

  12. Wenz, G., Han, B.H., Müller, A.: Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106, 782–817 (2006)

    CAS  PubMed  Google Scholar 

  13. Foster, J.A., Steed, J.W.: Exploiting cavities in supramolecular gels. Angew. Chem. Int. Ed. 49, 6718–6724 (2010)

    CAS  Google Scholar 

  14. Barrow, S.J., Kasera, S., Rowland, M.J., Barrio, J.D., Scherman, O.A.: Cucurbituril-Based Molecular Recognition. Chem. Rev. 115, 12320–12406 (2015)

    CAS  PubMed  Google Scholar 

  15. Qi, Z., Schalley, C.A.: Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry. Acc. Chem. Res. 47, 2222–2233 (2014)

    CAS  PubMed  Google Scholar 

  16. Bӧhmer, V.: Calixarenes, macrocycles with (almost) unlimited possibilities. Angew. Chem. Int. Edi. Engl. 34, 713–745 (2010)

    Google Scholar 

  17. Park, J., Lee, J.H., Jaworski, J., Shinkai, S., Jung, J.H.: Luminescent calix[4]arene-based metallogel formed at different solvent composition. Inorg. Chem. 53, 7181–7187 (2014)

    CAS  PubMed  Google Scholar 

  18. Xing, B., Choi, M.F., Zhou, Z., Xu, B.: Spontaneous enrichment of organic molecules from aqueous and gas phases into a stable metallogel. Langmuir. 18, 9654–9658 (2002)

    CAS  Google Scholar 

  19. Xing, B., Choi, M.F., Xu, B.: A stable metal coordination polymer gel based on a calix[4]arene and its “uptake” of non-ionic organic molecules from the aqueous phase. Chem. Commun., 362–363 (2002)

  20. Wang, K.P., Chen, Y., Liu, Y.: A polycation-induced secondary assembly of amphiphilic calixarene and its multi-stimuli responsive gelation behavior. Chem. Commun. 51, 1647–1649 (2015)

    CAS  Google Scholar 

  21. Hwang, D., Lee, E., Jung, J.H., Lee, S.S., Park, K.M.: Formation of calix[4]arene-based supramolecular gels triggered by K+ and Rb+: exemplification of a structure-property relationship. Cryst. Growth Des. 13, 4177–4180 (2013)

    CAS  Google Scholar 

  22. Goh, C.Y., Becker, T., Brown, D.H., Skelton, B.W., Jones, F., Mocerino, M., Ogden, M.I.: Self-inclusion of proline-functionalised calix[4]arene leads to hydrogelation[J]. Chem. Commun. 47, 6057–6605 (2011)

    CAS  Google Scholar 

  23. Becker, T., Goh, C.Y., Jones, F., Mclldowie, M.J., Mocerino, M., Ogden, M.I.: Proline-functionalised calix[4]arene: an anion-triggered hydrogelator. Chem. Commun., 3900–3902 (2008)

  24. Zhang, J., Guo, D., Wang, L.H., Wang, Z., Liu, Y.: Supramolecular binary hydrogels from calixarenes and amino acids and their entrapment-release of model dye molecules. Soft Matter. 7, 1756–1762 (2011)

    CAS  Google Scholar 

  25. Wang, Z., Guo, D., Zhang, J., Liu, Y.: Electro-responsive binary hydrogels based on calixarene and viologens. Acta Chim. Sin. 70, 1709–1715 (2012)

    CAS  Google Scholar 

  26. Kim, K.Y., Park, S., Jung, S.H., Lee, S.S., Park, K.M., Shinkai, S., Jung, J.H.: Geometric change of a Thiacalix[4]arene supramolecular gel with volatile gases and its chromogenic detection for rapid analysis. Inorg. Chem. 53, 3004–3011 (2014)

    CAS  PubMed  Google Scholar 

  27. Lee, J.H., Kim, C., Jung, J.H.: Control of the rheological properties of clay nanosheet hydrogels with a guanidinium-attached calix[4]arene binder. Chem. Commun. 51, 15184–15187 (2015)

    CAS  Google Scholar 

  28. Kumar, D.K., Steed, J.W.: Supramolecular gel phase crystallization: orthogonal self-assembly under non-equilibrium conditions. Chem. Soc. Rev. 43, 2080–2088 (2014)

    CAS  PubMed  Google Scholar 

  29. Zheng, Y.S., Ji, A., Chen, X.J., Zhou, J.L.: Enantioselective nanofiber-spinning of chiral calixarene receptor with guest. Chem. Commun., 3398–3400 (2007)

  30. Zhou, J.L., Chen, X.J., Zheng, Y.S.: Heat-set gels and egg-like vesicles using two component gel system based on chiral calix[4]arenes. Chem. Commun., 5200–5202 (2007)

  31. Zheng, Y.S., Ran, S.Y., Hu, Y.J., Liu, X.X.: Enantioselective self-assembly of chiralcalix[4]arene acid with amines. Chem. Commun., 1121–1123 (2009)

  32. Smith, D.K.: Lost in translation? Chirality effects in the self-assembly of nanostructured gel-phase materials. Chem. Soc. Rev. 38(3), 684–694 (2009)

    CAS  PubMed  Google Scholar 

  33. Zhang, L., Jin, Q., Liu, M.: Enantioselective recognition by chiral supramolecular gels. Chem. Asian J. 11, 2642–2649 (2016)

    CAS  PubMed  Google Scholar 

  34. Choi, H., Seo, H., Go, M., Lee, S.S., Jung, J.H.: Enhanced mechanical and helical properties with achiral calix[4]arene in a co-assembled hydrogel with a helical structure. Eur. J. Org. Chem. 2018, 219–222 (2018)

    CAS  Google Scholar 

  35. Choi, H., Lee, J.H., Jung, J.H.: Roles of both amines and acid in supramolecular hydrogel formation of tetracarboxyl acid-appended calix[4]arene gelator. RSC Adv. 5, 20066–20072 (2012)

    Google Scholar 

  36. Kaufmann, L., Kennedy, S.R., Jones, C.D., Steed, J.W.: Cavity-containing supramolecular gels as a crystallization tool for hydrophobic pharmaceuticals. Chem. Commun. 52, 10113–10116 (2016)

    CAS  Google Scholar 

  37. Arumugaperumal, R., Raghunath, P., Lin, M.C., Chung, W.S.: Distinct nanostructures and organogel driven by reversible molecular switching of a tetraphenylethene-involved calix[4]arene-based amphiphilic [2]rotaxane. Chem. Mater. 30, 7221–7233 (2018)

    CAS  Google Scholar 

  38. Granata, G., Petralia, S., Forte, G., Conoci, S., Consoli, G.M.L.: Injectable supramolecular nanohydrogel from a micellar self-assembling calix[4]arene derivative and curcumin for a sustained drug release. Mater. Sci. Eng. C Mater. Biol. Appl. 111, 110842 (2020)

    CAS  PubMed  Google Scholar 

  39. Liu, J., He, P., Yan, J., Fang, X., Peng, J., Liu, K., Fang, Y.: An organometallic super-gelator with multiple-stimulus responsive properties. Adv. Mater. 20, 2508–2511 (2008)

    CAS  Google Scholar 

  40. Cai, X., Liu, K., Yan, J., Zhang, H., Hou, X., Liu, Z., Fang, Y.: Calix[4]arene-based supramolecular gels with unprecedented rheological properties. Soft Matter. 8, 3756–3761 (2012)

    CAS  Google Scholar 

  41. Cai, X., Wu, Y., Wang, L., Yan, N., Liu, J., Fang, X., Fang, Y.: Mechano-responsive calix[4]arene-based molecular gels: agitation induced gelation and hardening. Soft Matter. 9, 5807–5814 (2013)

    CAS  Google Scholar 

  42. Wu, Y., Liu, K., Chen, X., Chen, Y., Zhang, S., Peng, J., Fang, Y.: A novel calix[4]arene-based dimeric-cholesteryl derivative: synthesis, gelation and unusual properties. New J. Chem. 39, 639–649 (2014)

    Google Scholar 

  43. Baddela, A.K., Hinge, V.K., Yarramala, D.S., Rao, C.P.: Reversible, and reusable gel of a monocholesteryl conjugated calix[4]arene as functional material to store and release dyes and drugs including doxorubicin, curcumin, and tocopherol. ACS Appl. Mater. Interf. 7, 37–50 (2015)

    Google Scholar 

  44. Cai, X., Xu, Y., Yang, R., Yang, H.: Preparation and investigation of temperature-responsive calix[4]arene-based molecular gels. RSC Adv. 7, 28476–28482 (2017)

    CAS  Google Scholar 

  45. Guo, H., Yang, F., Liu, W., Lai, J.: Novel supramolecular liquid crystals: synthesis and mesomorphic properties of calix[4]arene-cholesterol derivatives. Tetrahedron Lett. 56, 866–870 (2015)

    CAS  Google Scholar 

  46. Zhang, X., Guo, H., Yang, F., Yuan, J.: Ion complexation-controlled columnar mesophase of calix[4]arene-cholesterol derivatives with Schiff-base bridges. Tetrahedron Lett. 57, 905–909 (2016)

    CAS  Google Scholar 

  47. Tsai, C.C., Cheng, Y.T., Shen, L.C., Chang, K.C., Ho, I.T., Chu, J.H., Chung, W.S.: Biscalix[4]arene derivative as a very efficient phase selective gelator for oil spill recovery. Org. Lett. 15, 5830–5833 (2013)

    CAS  PubMed  Google Scholar 

  48. Tsai, C.C., Chang, K.C., Ho, I.T., Chu, J.H., Cheng, Y.T., Shen, L.C., Chung, W.S.: Evolution of nano- to microsized spherical assemblies of fluorogenic biscalix[4]arenes into supramolecular organogels. Chem. Commun. 49, 3037–3039 (2013)

    CAS  Google Scholar 

  49. Su, P.M., Chang, K.C., Yang, C.J., Liu, Y.C., Chung, W.S.: Light-driven nanofiber and nanoring morphological transformations in organogels based on an azobenzene-bridged biscalix[4]arene. Chem. Commun. 53, 13241–13244 (2017)

    CAS  Google Scholar 

  50. Song, S., Wang, J., Feng, H.T., Zhu, Z.H., Zheng, Y.S.: Supramolecular hydrogel based on amphiphilic calix[4]arene and its application in the synthesis of silica nanotubes. RSC Adv. 4, 24909–24922 (2014)

    CAS  Google Scholar 

  51. Sharma, V.S., Sharma, A.S., Shah, A.P., Shah, P.A., Shrivastav, P.S., Athar, M.: New class of supramolecular bowl-shaped columnar mesogens derived from thiacalix[4]arene exhibiting gelation and organic light-emitting diodes applications. ACS Omega. 4, 15862–15872 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Duy, L.N., Sekiya, R., Tosaka, M., Yamago, S., Matsumoto, T., Nishino, T., Ichikawa, T., Haino, T.: Organogelators of 5,17-Difunctionalized calix[4]arenes. Chem. Lett. 48, 43–46 (2019)

    CAS  Google Scholar 

  53. Guo, H., Zhang, R., Han, Y., Wang, J., Yan, C.: A p-tert-Tutyldihomooxacalix[4]arene based soft gel for sustained drug release in water. Front. Chem. 8, Article(33) (2020)

    PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No: 21703157, 21702086). Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education in Shaanxi Normal University (2018031) and Natural Science Foundation of Shaanxi Province Department of Education (19JK0295) were greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuqin Cai.

Additional information

Publisher’s Note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Zhao, Q. A mini review: supramolecular gels based on calix[4]arene derivatives. J Incl Phenom Macrocycl Chem 99, 13–22 (2021). https://doi.org/10.1007/s10847-020-01032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-01032-8

Keywords

Navigation