Skip to main content

Supramolecular Ionic Networks: Design and Synthesis

  • Chapter
  • First Online:
Supramolecular Assemblies Based on Electrostatic Interactions

Abstract

Supramolecular polymer networks are chains of low molecular mass monomers held together by reversible non-covalent interactions, such as hydrogen bonds, metal–ligand bonds, hydrophobic or π−π  stacking interactions. The reversibility and low energy bonding bring about additional features compared to conventional covalent polymers, which potentially lead to new properties such as improved processing, self-healing behavior, and stimuli-responsiveness. Whereas the use of (multiple) hydrogen bonds is leading the discoveries in this area, the emerging ionic chemistry has also been translated to the development of supramolecular assemblies based on ionic interactions. This approach provides exciting opportunities for synthesizing new supramolecular materials via manipulation of the type and strength of the ion pair as well as the number of interactions. In this chapter, the most relevant advances and current knowledge in design and synthesis of supramolecular ionic networks, including those prepared from low molecular weight molecules, polymers, or a combination of the two are briefly reviewed. Their flexible and simple construction is depicted via several examples and case studies. Finally, the important concerns and possible opportunities are explained to inspire critical discussions and boost further findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lehn J (1995) Supramolecular chemistry: concepts and PerspectiVes. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Book  Google Scholar 

  2. Atwood JL, Davies JED, MacNicol DD et al (1996) Comprehensive supramolecular chemistry. Pergamon, Oxford

    Google Scholar 

  3. Whitesides GM, Simanek EE, Mathias JP et al (1995) Noncovalent synthesis: using physical-organic chemistry to make aggregates. Acc Chem Res 28:37–44. https://doi.org/10.1021/ar00049a006

    Article  CAS  Google Scholar 

  4. Nelson A, Cantrill SJ, Turnbull WB, Stoddart JF (2005) Multivalency and cooperativity in supramolecular. Chemistry 38:723–732

    Google Scholar 

  5. Sijbesma RP, Beijer FH, Brunsveld L et al (1997) Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding Published by : American Association for the advancement of science stable. http://www.jstor.org/stable/2894863 Your use of the JSTOR archive indicates your a. 278:1601–1604

  6. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Supramolecular polymers 5–8

    Google Scholar 

  7. Serpe MJ, Craig SL, Uni V, Carolina N (2007) Physical organic chemistry of supramolecular polymers. Langmuir 23:1626–1634. https://doi.org/10.1021/la0621416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lehn J (2007) From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. 151–160. https://doi.org/10.1039/b616752g

  9. Yamauchi K, Lizotte JR, Hercules DM et al (2002) Combinations of microphase separation and terminal multiple hydrogen bonding in novel macromolecules. J Am Chem Soc 124:8599–8604

    Article  CAS  Google Scholar 

  10. Lehn BJ (1990) Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed Engl 29:1304–1319

    Article  Google Scholar 

  11. Feldman KE, Kade MJ, de Greef TFA et al (2008) Polymers with multiple hydrogen-bonded end groups and their blends. Macromolecules 4694–4700

    Google Scholar 

  12. Broze G, Jerome R, Teyssie P (1981) Halato-telechelic polymers. 1. Gel formation and its dependence on the ionic content. Macromolecules 14:224–225. https://doi.org/10.1021/ma50002a052

    Article  CAS  Google Scholar 

  13. Broze G, Jerome R, Teyssi P (1982) Halato-telechelic polymers. 4 Synthesis and dilute-solution behavior. Macromolecules 15:920–927

    Article  CAS  Google Scholar 

  14. Yount WC, Juwarker H, Craig SL (2003) Orthogonal control of dissociation dynamics relative to thermodynamics in a main-chain reversible polymer. J Am Chem Soc 125:15302–15303

    Article  CAS  Google Scholar 

  15. Yount WC, Loveless DM, Craig SL (2005) Strong means slow: dynamic contributions to the bulk mechanical properties of supramolecular networks**. 2746–2748. https://doi.org/10.1002/anie.200500026

  16. Li J (2011) Polymer networks containing reversibly associating side-groups. University of Rochester, New York

    Google Scholar 

  17. Voorhaar L, Hoogenboom R (2016) Supramolecular polymer networks: hydrogels and bulk materials. Chem Soc Rev 45:4013–4031. https://doi.org/10.1039/c6cs00130k

    Article  CAS  PubMed  Google Scholar 

  18. De GTFA, Smulders MMJ, Wolffs M et al (2009) Supramolecular polymerization. Chem Rev 109:5687–5754

    Article  Google Scholar 

  19. Wang J, Jiang M (2006) Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation. J Am Chem Soc 128:3703–3708

    Article  CAS  Google Scholar 

  20. Zhong C, Luo P (2007) Characterization, solution properties, and morphologies of a hydrophobically associating cationic terpolymer. J Polym Sci Part B Polym Phys 45:826–839. https://doi.org/10.1002/polb

    Article  CAS  Google Scholar 

  21. Faul CFJ, Antonietti M (2003) Ionic self-assembly: facile synthesis of supramolecular materials. Adv Mater 15:673–683. https://doi.org/10.1002/adma.200300379

    Article  CAS  Google Scholar 

  22. Lin X, Grinstaff MW (2013) Ionic supramolecular assemblies. Isr J Chem 53:498–510. https://doi.org/10.1002/ijch.201300034

    Article  CAS  Google Scholar 

  23. Lange RFM, Gurp MVAN, Meijer EW (1999) Hydrogen-bonded supramolecular polymer networks. J Polym Sci Part A Polym Chem 37:3657–3670

    Article  CAS  Google Scholar 

  24. Yamauchi K, Lizotte JR, Long TE (2003) Thermoreversible poly(alkyl acrylates consisting of self-complementary multiple hydrogen bonding. 1083–1088

    Google Scholar 

  25. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980. https://doi.org/10.1038/nature06669

    Article  CAS  PubMed  Google Scholar 

  26. Montarnal D, Tournilhac F, Hidalgo M et al (2009) Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. J Am Chem Soc 131:7966–7967

    Article  CAS  Google Scholar 

  27. Montarnal D, Cordier P, Soulié-Ziakovic C et al (2008) Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea. J Polym Sci Part A Polym Chem 46:7925–7936. https://doi.org/10.1002/pola

    Article  CAS  Google Scholar 

  28. Diesendruck CE, Sottos NR, Moore JS, White SR (2015) Biomimetic self-healing. Angew Chem Int Ed 54:10428–10447. https://doi.org/10.1002/anie.201500484

    Article  CAS  Google Scholar 

  29. Rekondo A, Martin R, De LAR et al (2014) Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater Horiz 1:237–240. https://doi.org/10.1039/c3mh00061c

    Article  CAS  Google Scholar 

  30. Sarma RJ, Otto S, Nitschke JR (2007) Disulfides, imines, and metal coordination within a single system: interplay between three dynamic equilibria. Chem Eur J 13:9542–9546. https://doi.org/10.1002/chem.200701228

    Article  CAS  PubMed  Google Scholar 

  31. Belenguer AM, Friščić T, Day GM, Sanders JKM (2011) Solid-state dynamic combinatorial chemistry: reversibility and thermodynamic product selection in covalent mechanosynthesis. Chem Sci 2:696–700. https://doi.org/10.1039/c0sc00533a

    Article  CAS  Google Scholar 

  32. Lehn J (1988) Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel lecture). Angew Chem Inr Ed 27:89–112

    Article  Google Scholar 

  33. Lehn J (1993) Supramolecular chemistry. Science (80)260:1762–1763

    Google Scholar 

  34. Piguet C, Bernardinelli G, Hopfgartner G (1997) Helicates as versatile supramolecular complexes. Chem Rev 97:2005–2062

    Article  CAS  Google Scholar 

  35. Kelch S, Rehahn M (1997) High-molecular-weight Ruthenium(ii) coordination polymers: synthesis and solution properties. Macromolecules 30:6185–6193

    Article  CAS  Google Scholar 

  36. Knapp R, Schott A, Rehahn M (1996) A novel synthetic strategy toward soluble, well-defined Ruthenium(II) coordination polymers. Macromolecules 29:478–480

    Article  CAS  Google Scholar 

  37. Lohmeijer BGG, Schubert US (2002) Supramolecular engineering with macromolecules: an alternative concept for block copolymers. Angew Chem Int Ed 41:3825–3829

    Article  CAS  Google Scholar 

  38. Schmatloch S, González MF, Schubert US (2002) Metallo-supramolecular diethylene glycol: water-soluble reversible polymers. Macromol Rapid Commun 23:957–961

    Article  CAS  Google Scholar 

  39. Hofmeier H, Schubert US (2003) supramolecular branching and crosslinking of terpyridine-modified copolymers: complexation and decomplexation studies in diluted solution. Macromol Chem Phys 204:1391–1397. https://doi.org/10.1002/macp.200350003

    Article  CAS  Google Scholar 

  40. Dobrawa R, Würthner F (2005) Metallosupramolecular approach toward functional. J Polym Sci Part A Polym Chem 43:4981–4995. https://doi.org/10.1002/pola.20997

    Article  CAS  Google Scholar 

  41. Markovitsi D, Bengs H, Ringsdorf H (1992) Charge-transfer absorption in doped columnar liquid crystals. J Chem Soc Faraday Trans 88:1275–1279

    Article  CAS  Google Scholar 

  42. Ringsdorf H, Schlarb B, Venzmer J (1988) Molekulare Architektur und Funktion von polymeren orientierten Systemen – Modelle für das Studium von Organisation, Oberflächenerkennung und Dynamik bei Biomembranen. Angew Chem Int Ed 100:117–162

    Article  CAS  Google Scholar 

  43. Henderson JR (2000) Discotic amphiphiles. J Chem Phys 113:5965–5970. https://doi.org/10.1063/1.1308105

    Article  CAS  Google Scholar 

  44. Percec V, Imam MR, Peterca M et al (2009) Self-assembly of dendronized triphenylenes into helical pyramidal columns and chiral spheres. J Am Chem Soc 131:7662–7677

    Article  CAS  Google Scholar 

  45. Burattini S, Greenland BW, Merino DH et al (2010) A healable supramolecular polymer blend based on aromatic π–π stacking and hydrogen-bonding interactions. J Am Chem Soc 132:12051–12058

    Article  CAS  Google Scholar 

  46. Burattini S, Greenland BW, Hayes W et al (2011) A supramolecular polymer based on tweezer-type π–π stacking interactions: molecular design for healability and enhanced toughness. Chem Mater 23:6–8. https://doi.org/10.1021/cm102963k

    Article  CAS  Google Scholar 

  47. Burattini S, Colquhoun HM, Fox JD et al (2009) A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor π–π stacking interactions. Chem Commun 6717–6719. https://doi.org/10.1039/b910648k

  48. Romaner BL, Pogantsch A, Scandiucci De Freitas P et al (2003) The origin of green emission in polyfluorene-based conjugated polymers: on-chain defect fluorescence. Adv Funct Mater 13:597–601. https://doi.org/10.1002/adfm.200304360

    Article  CAS  Google Scholar 

  49. Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ (2005) About supramolecular assemblies of π-conjugated systems. Chem Rev 105

    Google Scholar 

  50. Russell DM, Arias AC, Friend RH et al (2002) Efficient light harvesting in a photovoltaic diode composed of a semiconductor conjugated copolymer blend. Appl Phys Lett 80:2204–2206. https://doi.org/10.1063/1.1464226

    Article  CAS  Google Scholar 

  51. Varley RJ, van der Zwaag S (2008) Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. Acta Mater 56:5737–5750. https://doi.org/10.1016/j.actamat.2008.08.008

    Article  CAS  Google Scholar 

  52. Varley RJ, van der Zwaag S (2010) Autonomous damage initiated healing in a thermo-responsive ionomer. Polym Int 59:1031–1038. https://doi.org/10.1002/pi.2841

    Article  CAS  Google Scholar 

  53. Kalista SJ, Pflug JR, Varley RJ (2013) Effect of ionic content on ballistic self-healing in EMAA copolymers and ionomers. Polym Chem 4:4910–4926. https://doi.org/10.1039/c3py00095h

    Article  CAS  Google Scholar 

  54. Masanori H (1993) Polyelectrolytes, science and technology. Marcel Dekker, New York

    Google Scholar 

  55. Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J Chem Phys 51:924–933. https://doi.org/10.1063/1.1672157

    Article  CAS  Google Scholar 

  56. Manning GS (1976) The application of polyelectrolyte limiting laws to the helix–coil transition of DNA. VI. The numerical value of the axial phosphate spacing for the coil form. Biopolymers 15:2385–2390. https://doi.org/10.1002/bip.1976.360151206

    Article  CAS  PubMed  Google Scholar 

  57. Anderson CF, Record MT (1982) Polyelectrolyte theories and their applications to DNA. Annu Rev Phys Chem 33:191–222. https://doi.org/10.1146/annurev.pc.33.100182.001203

    Article  CAS  Google Scholar 

  58. Consorti CS, Suarez PAZ, de Souza RF et al (2005) Identification of 1, 3-dialkylimidazolium salt supramolecular aggregates in solution. J Phys Chem B 109:4341–4349

    Article  CAS  Google Scholar 

  59. Paulechka YU, Kabo GJ, Blokhin AV et al (2009) IR and X-ray study of polymorphism in 1-Alkyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imides. J Phys Chem B 113:9538–9546

    Article  CAS  Google Scholar 

  60. Hoogenboom R, Fournier D, Schubert US (2008) Asymmetrical supramolecular interactions as basis for complex responsive macromolecular architectures. Chem Commun 155–162. https://doi.org/10.1039/b706855g

  61. Craig SL (2009) From ionic liquids to supramolecular polymers. Angew Chem Int Ed 48:2645–2647. https://doi.org/10.1002/anie.200805603

    Article  CAS  Google Scholar 

  62. Hosseini MW, Ruppert R, Schaeffer P et al (1994) A molecular approach to solid-state synthesis: prediction and synthesis of self-assembled infinite rods. J Chem Soc Chem Commun 2135–2136

    Google Scholar 

  63. Felix O, Hosseini MW, De Cian A (2001) Design of 2-D hydrogen bonded molecular networks using pyromellitate dianion and cyclic bisamidinium dication as complementary tectons. Solid State Sci 3:789–793

    Article  CAS  Google Scholar 

  64. Wathier M, Grinstaff MW (2008) Synthesis and properties of supramolecular ionic networks. J Am Chem Soc 130:9648–9649

    Article  CAS  Google Scholar 

  65. Lin X, Godeau G, Grinstaff MW (2014) A reversible supramolecular assembly containing ionic interactions and disulfide linkages. New J Chem 38:5186–5189. https://doi.org/10.1039/c4nj00895b

    Article  CAS  Google Scholar 

  66. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237. https://doi.org/10.1021/cr068040u

    Article  CAS  PubMed  Google Scholar 

  67. Burrell GL, Burgar IM, Separovic F, Dunlop NF (2010) Preparation of protic ionic liquids with minimal water content and 15 N NMR study of proton transfer. Phys Chem Chem Phys 12:1571–1577. https://doi.org/10.1039/b921432a

    Article  CAS  PubMed  Google Scholar 

  68. Stoimenovski J, Izgorodina EI, Macfarlane DR (2010) Ionicity and proton transfer in protic ionic liquids. Phys Chem Chem Phys 12:10341–10347. https://doi.org/10.1039/c0cp00239a

    Article  CAS  PubMed  Google Scholar 

  69. Aboudzadeh MA, Muñoz ME, Santamaría A et al (2012) Facile synthesis of supramolecular ionic polymers that combine unique rheological, ionic conductivity, and self-healing properties. Macromol Rapid Commun 33:314–318. https://doi.org/10.1002/marc.201100728

    Article  CAS  PubMed  Google Scholar 

  70. Aboudzadeh MA, Muñoz ME, Santamaría A et al (2012) Synthesis and rheological behavior of supramolecular ionic networks based on citric acid and aliphatic diamines. Macromolecules 45:7599–7606. https://doi.org/10.1021/ma300966m

    Article  CAS  Google Scholar 

  71. Aboudzadeh A, Fernandez M, Muñoz ME et al (2014) Ionic supramolecular networks fully based on chemicals coming from renewable sources. Macromol Rapid Commun 35:460–465. https://doi.org/10.1002/marc.201300732

    Article  CAS  PubMed  Google Scholar 

  72. Aboudzadeh MA, Muñoz ME, Santamaría A, Mecerreyes D (2013) New supramolecular ionic networks based on citric acid and geminal dicationic ionic liquids. RSC Adv 3:8677–8682. https://doi.org/10.1039/c3ra40629f

    Article  CAS  Google Scholar 

  73. Shaplov AS, Vlasov PS, Armand M et al (2011) Design and synthesis of new anionic “polymeric ionic liquids” with high charge delocalization. Polym Chem 2:2609–2618. https://doi.org/10.1039/c1py00282a

    Article  CAS  Google Scholar 

  74. Aboudzadeh MA, Shaplov AS, Hernandez G et al (2015) Supramolecular ionic networks with superior thermal and transport properties based on novel delocalized di-anionic compounds. J Mater Chem A 3:2338–2343. https://doi.org/10.1039/c4ta05792a

    Article  CAS  Google Scholar 

  75. Hei ZH, Song GL, Zhao CY et al (2016) Supramolecular porous ionic network based on triazinonide and imidazolium: a template-free synthesis of meso-/macroporous organic materials: via a one-pot reaction-assembly procedure. RSC Adv 6:92443–92448. https://doi.org/10.1039/c6ra20590a

    Article  CAS  Google Scholar 

  76. Thünemann AF (2002) Polyelectrolyte-surfactant complexes (synthesis, structure and materials aspects). Prog Polym Sci 27:1473–1572. https://doi.org/10.1016/S0079-6700(02)00017-5

    Article  Google Scholar 

  77. Ober CK, Wegner G (1997) Polyelectrolyte-surfactant complexes in the solid state: facile building blocks for self-organizing materials. Adv Mater 9:17–31. https://doi.org/10.1002/adma.19970090104

    Article  CAS  Google Scholar 

  78. Goddard ED (1986) Polymer-surfactant interaction: part II: polymer and surfactant of opposite charge. Colloids Surf 19:301–329. https://doi.org/10.1016/0166-6622(86)80341-9

    Article  CAS  Google Scholar 

  79. Antonietti M, Conrad J, Thuenemann A (1994) Polyelectrolyte-surfactant complexes: a new type of solid, mesomorphous material. Macromolecules 27:6007–6011. https://doi.org/10.1021/ma00099a011

    Article  CAS  Google Scholar 

  80. Antonietti M, Maskos M (1996) Fine-tuning of phase structures and thermoplasticity of polyelectrolyte-surfactant complexes: copolymers of ionic monomers with N-alkylacrylamides. Macromolecules 29:4199–4205. https://doi.org/10.1021/ma9518870

    Article  CAS  Google Scholar 

  81. Antonietti M, Thünemann A (1996) Polyelectrolyte-lipid complexes as membrane mimetic systems. Curr Opin Colloid Interface Sci 1:667–671. https://doi.org/10.1016/s1359-0294(96)80106-3

    Article  CAS  Google Scholar 

  82. Antonietti M, Kaul A, Thunemann A (1995) Complexation of lecithin with cationic polyelectrolytes: “Plastic membranes” as models for the structure of the cell membrane? Langmuir 11:2633–2638. https://doi.org/10.1021/la00007a050

    Article  CAS  Google Scholar 

  83. Antonietti M, Wenzel A, Thünemann A (1996) The “Egg-carton” phase: a new morphology of complexes of polyelectrolytes with natural lipid mixtures. Langmuir 12:2111–2114. https://doi.org/10.1021/la950620r

    Article  CAS  Google Scholar 

  84. Thünemann AF, Lochhaas KH (1998) Self-assembly of solid polyelectrolyte—silicon—surfactant complexes. Langmuir 14:6220–6225. https://doi.org/10.1021/la980229g

    Article  Google Scholar 

  85. Thünemann AF, General S (2000) Poly(ethylene imine) n-alkyl carboxylate complexes. Langmuir 16:9634–9638. https://doi.org/10.1021/la000991u

    Article  CAS  Google Scholar 

  86. Gröhn F, Klein K, Brand S (2008) Facile route to supramolecular structures: self-assembly of dendrimers and naphthalene dicarboxylic acids. Chem A Eur J 14:6866–6869. https://doi.org/10.1002/chem.200800650

    Article  CAS  Google Scholar 

  87. Gröhn F (2008) Electrostatic self-assembly as route to supramolecular structures. Macromol Chem Phys 209:2295–2301. https://doi.org/10.1002/macp.200800290

    Article  CAS  Google Scholar 

  88. González L, Ladegaard Skov A, Hvilsted S (2013) Ionic networks derived from the protonation of dendritic amines with carboxylic acid end-functionalized PEGs. J Polym Sci Part A Polym Chem 51:1359–1371. https://doi.org/10.1002/pola.26503

    Article  CAS  Google Scholar 

  89. Godeau G, Navailles L, Nallet F et al (2012) From brittle to pliant viscoelastic materials with solid state linear polyphosphonium-carboxylate assemblies. Macromolecules 45:2509–2513. https://doi.org/10.1021/ma3002092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lin X, Navailles L, Nallet F, Grinstaff MW (2012) Influence of phosphonium alkyl substituents on the rheological and thermal properties of phosphonium-PAA-based supramolecular polymeric assemblies. Macromolecules 45:9500–9506. https://doi.org/10.1021/ma3019624

    Article  CAS  Google Scholar 

  91. Makam P, Gazit E (2018) Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology. Chem Soc Rev 47:3406–3420. https://doi.org/10.1039/c7cs00827a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Criado-Gonzalez M, Wagner D, Rodon Fores J et al (2020) Supramolecular hydrogel induced by electrostatic interactions between polycation and phosphorylated-fmoc-tripeptide ́. Chem Mater 32:1946–1956. https://doi.org/10.1021/acs.chemmater.9b04823

    Article  CAS  Google Scholar 

  93. Fuoss RM, Sadek H (1949) Mutual interaction of polyelectrolytes. Science (80)110:552–554. https://doi.org/10.1126/science.110.2865.552

  94. Michaels AS, Miekka RG (1961) Polycation-polyanion complexes: preparation and properties of poly-(vinylbenzyltrimethylammonium) poly-(styrenesulfonate). J Phys Chem 65:1765–1773

    Article  CAS  Google Scholar 

  95. Harada A, Kataoka K (1995) Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules 28:5294–5299

    Article  CAS  Google Scholar 

  96. Itaka K, Kanayama N, Nishiyama N et al (2004) Supramolecular nanocarrier of siRNA from PEG-based block catiomer carrying diamine side chain with distinctive pK a directed to enhance intracellular gene silencing. J Am Chem Soc 126:13612–13613. https://doi.org/10.1021/ja047174r

    Article  CAS  PubMed  Google Scholar 

  97. Kabanov AV, Kabanov VA (1995) DNA complexes with polycations for the delivery of genetic material into cells. Bioconjugate Chem 6:7–20. https://doi.org/10.1021/bc00031a002

    Article  CAS  Google Scholar 

  98. Kataoka K, Togawa H, Harada A et al (1996) Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules 29:8556–8557. https://doi.org/10.1021/ma961217+

    Article  CAS  Google Scholar 

  99. Vinogradov S, Batrakova E, Li S, Kabanov A (1999) Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. 10:851–860. https://doi.org/10.1021/bc990037c

  100. Boussif O, Lezoualc’h F, Zanta MA et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. PNAS 92:7297–7301. https://doi.org/10.1073/pnas.92.16.7297

  101. Verma IM, Somia N (1997) Gene therapy—promises, problems and prospects. Nature 389:239–242

    Article  CAS  Google Scholar 

  102. Jeong JH, Kim SW, Park TG (2003) Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjugate Chem 14:473–479

    Article  CAS  Google Scholar 

  103. Jiang X, Dai H, Ke C et al (2007) PEG-b-PPA/DNA micelles improve transgene expression in rat liver through intrabiliary infusion. J Control Release 122:297–304. https://doi.org/10.1016/j.jconrel.2007.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Oishi M, Sasaki S, Nagasaki Y, Kataoka K (2003) pH-responsive Oligodeoxynucleotide (ODN)—Poly (Ethylene Glycol) conjugate through acid-labile—thiopropionate linkage: preparation and polyion complex micelle formation. Biomacromol 4:1426–1432

    Article  CAS  Google Scholar 

  105. Takae S, Miyata K, Oba M et al (2008) PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J Am Chem Soc 130:6001–6009

    Article  CAS  Google Scholar 

  106. Wakebayashi D, Nishiyama N, Itaka K et al (2004) Polyion complex micelles of pDNA with acetal-poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) block copolymer as the gene carrier system: physicochemical properties of micelles relevant to gene transfection efficacy. Biomacromol 5:2128–2136

    Article  CAS  Google Scholar 

  107. Jewell CM, Zhang J, Fredin NJ, Lynn DM (2005) Multilayered polyelectrolyte films promote the direct and localized delivery of DNA to cells. J Control Release 106:214–223. https://doi.org/10.1016/j.jconrel.2005.04.014

    Article  CAS  PubMed  Google Scholar 

  108. Wong SY, Pelet JM, Putnam D (2007) Polymer systems for gene delivery-past, present, and future. Prog Polym Sci 32:799–837. https://doi.org/10.1016/j.progpolymsci.2007.05.007

    Article  CAS  Google Scholar 

  109. Park TG, Jeong JH, Kim SW (2006) Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 58:467–486. https://doi.org/10.1016/j.addr.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  110. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593. https://doi.org/10.1038/nrd1775

    Article  CAS  PubMed  Google Scholar 

  111. Tomioka N, Takasu D, Takahashi T, Aida T (1998) Electrostatic assembly of dendrimer electrolytes: negatively and positively charged dendrimer porphyrins. Angew Chem Int Ed 37:1531–1534. https://doi.org/10.1002/(SICI)1521-3773(19980619)37:11%3c1531::AID-ANIE1531%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

  112. Wang Q, Mynar JL, Yoshida M et al (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343. https://doi.org/10.1038/nature08693

    Article  CAS  PubMed  Google Scholar 

  113. Tamesue S, Ohtani M, Yamada K et al (2013) Linear versus dendritic molecular binders for hydrogel network formation with clay nanosheets: studies with ABA triblock copolyethers carrying guanidinium ion pendants. J Am Chem Soc 135:15650–15655. https://doi.org/10.1021/ja408547g

    Article  CAS  PubMed  Google Scholar 

  114. Noro A, Ishihara K, Matsushita Y (2011) Nanophase-separated supramolecular assemblies of two functionalized polymers via acid-base complexation. Macromolecules 44:6241–6244. https://doi.org/10.1021/ma201440v

    Article  CAS  Google Scholar 

  115. Furusho Y, Endo T (2014) Supramolecular polymer gels formed from carboxy-terminated telechelic polybutadiene and polyamidine through amidinium—carboxylate salt bridge. J Polym Sci, Part A Polym Chem 52:1815–1824. https://doi.org/10.1002/pola.27187

    Article  CAS  Google Scholar 

  116. Wang D, Guo J, Zhang H et al (2015) Intelligent rubber with tailored properties for self-healing and shape memory. J Mater Chem A 3:12864–12872. https://doi.org/10.1039/c5ta01915j

    Article  CAS  Google Scholar 

  117. Suriano R, Boumezgane O, Tonelli C, Turri S (2020) Viscoelastic properties and self-healing behavior in a family of supramolecular ionic blends from silicone functional oligomers. Polym Adv Technol 31:3247–3257. https://doi.org/10.1002/pat.5049

    Article  CAS  Google Scholar 

  118. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science (80) 227:1232–1237. https://doi.org/10.1126/science.277.5330.1232

  119. Wang Y, Angelatos AS, Caruso F (2008) Template synthesis of nanostructured materials via layer-by-layer assembly. Chem Mater 20:848–858. https://doi.org/10.1021/cm7024813

    Article  CAS  Google Scholar 

  120. Anzai J, Kobayashi Y, Nakamura N et al (1999) Layer-by-layer construction of multilayer thin films composed of avidin and biotin-labeled poly (amine)s. Langmuir 15:221–226

    Article  CAS  Google Scholar 

  121. Cheung JH, Stockton WB, Rubner MF (1997) Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions. Macromolecules 30:2712–2716

    Article  CAS  Google Scholar 

  122. Lvov Y, Ariga K, Onda M et al (1997) Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions. Langmuir 13:6195–6203. https://doi.org/10.1021/la970517x

    Article  CAS  Google Scholar 

  123. Borden MA, Caskey CF, Little E et al (2007) DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles. Langmuir 23:9401–9408. https://doi.org/10.1021/la7009034

    Article  CAS  PubMed  Google Scholar 

  124. Lvov Y, Munge B, Giraldo O et al (2000) Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption. Langmuir 16:8850–8857

    Article  CAS  Google Scholar 

  125. Lynn DM (2006) Layers of opportunity: nanostructured polymer assemblies for the delivery of macromolecular therapeutics. Soft Matter 2:269–273. https://doi.org/10.1039/b517860f

    Article  CAS  PubMed  Google Scholar 

  126. Choi J, Konno T, Takai M, Ishihara K (2009) Smart controlled preparation of multilayered hydrogel for releasing bioactive molecules. Curr Appl Phys 9:e259–e262. https://doi.org/10.1016/j.cap.2009.06.054

    Article  Google Scholar 

  127. Hammond PT (2012) Building biomedical materials layer-by-layer. Mater Today 15:196–206. https://doi.org/10.1016/S1369-7021(12)70090-1

    Article  CAS  Google Scholar 

  128. Hammond BPT (2004) Form and function in multilayer assembly: new applications at the nanoscale. Avd mater 16:1271–1293. https://doi.org/10.1002/adma.200400760

    Article  CAS  Google Scholar 

  129. Alkekhia D, Hammond PT, Shukla A (2020) Layer-by-layer biomaterials for drug delivery. Annu Rev Biomed Eng 22:1–24

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ali Aboudzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aboudzadeh, M.A. (2022). Supramolecular Ionic Networks: Design and Synthesis. In: Aboudzadeh, M.A., Frontera, A. (eds) Supramolecular Assemblies Based on Electrostatic Interactions. Springer, Cham. https://doi.org/10.1007/978-3-031-00657-9_1

Download citation

Publish with us

Policies and ethics