Skip to main content
Log in

Electrochemical aspects of cyclodextrin, calixarene and cucurbituril inclusion complexes

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The electrochemical behaviour of the host–guest complexes formed by cyclodextrin, calixarene and cucurbiturils host molecules with simple organic guest molecules and their applications using electrochemical studies are discussed in detail in this review. The change in the redox behaviour of the individual molecules upon complexation and the unique properties of the complexes formed are elaborated. The methodology and various electrochemical techniques used for the investigation of these host–guest are categorised with respect to the analytical methods. The electrochemical behaviour upon binding of host with guest and their applications are analysed in detail. The applications are ranging from simple molecular detection to sensing of toxicants, pollutants and biomolecules. The identification of cancer cells and discrimination of chiral molecules are the noteworthy application of these supramolecular electrochemical sensing systems. The aspects discussed in this review could help to extend the electrochemical applications of host–guest systems to utilize them in the highly important applications like cancer detection and pollutant detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bhalla, V.: Supramolecular chemistry. Resonance. 23, 277–290 (2018). https://doi.org/10.1007/s12045-018-0617-z

    Article  CAS  Google Scholar 

  2. Flood, A.H., Kaifer, A.E.: Supramolecular electrochemistry. In: Gale, P.A., Steed, J.W. (eds.) Supramolecular Chemistry (2012). https://doi.org/10.1002/9780470661345.smc028

  3. Tiwari, G., Tiwari, R., Rai, A.K.: Cyclodextrins in delivery systems: applications. J. Pharm. Bioallied Sci. 2, 72–79 (2010). https://doi.org/10.4103/0975-7406.67003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shinkai, S.: Molecular recognition of calixarene-based host molecules. J. Incl. Phenom. Mol. Recognit. Chem. 7, 193–201 (1989). https://doi.org/10.1007/BF01060721

    Article  CAS  Google Scholar 

  5. Barbero, H., Masson, E.: Chapter 5 Cucurbiturils as reaction vessels. In: Cucurbiturils and Related Macrocycles, pp. 86–120. The Royal Society of Chemistry (2020). https://doi.org/10.1039/9781788015967-00086

  6. Español, E.S., Villamil, M.M.: Calixarenes: Generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules. Biomolecules 9, 90 (2019). https://doi.org/10.3390/biom9030090

    Article  CAS  PubMed Central  Google Scholar 

  7. Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015). https://doi.org/10.1039/C4CS00273C

    Article  CAS  PubMed  Google Scholar 

  8. Liu, Y., Li, C.-J., Guo, D.-S., Pan, Z.-H., Li, Z.: A Comparative study of complexation of β-cyclodextrin, calix[4]arenesulfonate and cucurbit[7]uril with dye guests: fluorescence behavior and binding ability. Supramol. Chem. 19, 517–523 (2007). https://doi.org/10.1080/10610270601145444

    Article  CAS  Google Scholar 

  9. Xu, H., Zheng, J., Liang, H., Li, C.-P.: Electrochemical sensor for cancer cell detection using calix[8]arene/polydopamine/phosphorene nanocomposite based on host−guest recognition. Sensors Actuators B Chem. 317, 128193 (2020). https://doi.org/10.1016/j.snb.2020.128193

    Article  CAS  Google Scholar 

  10. Mokhtari, B., Pourabdollah, K., Dalali, N.: Analytical applications of calixarenes from 2005 up-to-date. J. Incl. Phenom. Macrocycl. Chem. 69, 1–55 (2011). https://doi.org/10.1007/s10847-010-9848-7

    Article  CAS  Google Scholar 

  11. Amabilino, D.B., Smith, D.K., Steed, J.W.: Supramolecular materials. Chem. Soc. Rev. 46, 2404–2420 (2017). https://doi.org/10.1039/C7CS00163K

    Article  CAS  PubMed  Google Scholar 

  12. Arvinte, A., Marangoci, N., Nicolescu, A., Pinteala, M.: Electrochemical evidence for inclusion complexes of thiotriazinone with cyclodextrins. RSC Adv. 6, 82817–82823 (2016). https://doi.org/10.1039/c6ra16386f

    Article  CAS  Google Scholar 

  13. Ju, H., Leech, D.: Host-guest interaction at a self-assembled monolayer/solution interface: an electrochemical analysis of the inclusion of 11-(ferrocenylcarbonyloxy)undecanethiol by cyclodextrins. Langmuir 14, 300–306 (1998). https://doi.org/10.1021/la970356x

    Article  CAS  Google Scholar 

  14. Endo, H., Nakaji-Hirabayashi, T., Morokoshi, S., Gemmei-Ide, M., Kitano, H.: Orientational effect of surface-confined cyclodextrin on the inclusion of bisphenols. Langmuir 21, 1314–1321 (2005). https://doi.org/10.1021/la048595p

    Article  CAS  PubMed  Google Scholar 

  15. Radi, A.E., Eissa, S.: Voltammetric and spectrophotometric study on the complexation of glibenclamide with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 68, 417–421 (2010). https://doi.org/10.1007/s10847-010-9801-9

    Article  CAS  Google Scholar 

  16. Palomar-Pardavé, M., Alarcón-Ángeles, G., Ramírez-Silva, M.T., Romero-Romo, M., Rojas-Hernández, A., Corona-Avendaño, S.: Electrochemical and spectrophotometric determination of the formation constants of the ascorbic acid-β-cyclodextrin and dopamine-β- cyclodextrin inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 69, 91–99 (2011). https://doi.org/10.1007/s10847-010-9818-0

    Article  CAS  Google Scholar 

  17. Hendy, G.M., Breslin, C.B.: An electrochemical study in aqueous solutions on the binding of dopamine to a sulfonated cyclodextrin host. Electrochim. Acta. 59, 290–295 (2012). https://doi.org/10.1016/j.electacta.2011.10.059

    Article  CAS  Google Scholar 

  18. Gao, T., Li, L., Wang, B., Zhi, J., Xiang, Y., Li, G.: Dynamic electrochemical control of cell capture-and-release based on redox-controlled host-guest interactions. Anal. Chem. 88, 9996–10001 (2016). https://doi.org/10.1021/acs.analchem.6b02156

    Article  CAS  PubMed  Google Scholar 

  19. Yang, S., You, M., Zhang, F., Wang, Q., He, P.: A sensitive electrochemical aptasensing platform based on exonuclease recycling amplification and host-guest recognition for detection of breast cancer biomarker HER2. Sensors Actuators B Chem. 258, 796–802 (2018). https://doi.org/10.1016/j.snb.2017.11.119

    Article  CAS  Google Scholar 

  20. Radi, A.E., Eissa, S.: Electrochemical study of indapamide and its complexation with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 71, 95–102 (2011). https://doi.org/10.1007/s10847-010-9906-1

    Article  CAS  Google Scholar 

  21. Tao, Y., Dai, J., Kong, Y., Sha, Y.: Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(l-glutamic acid). Anal. Chem. 86, 2633–2639 (2014). https://doi.org/10.1021/ac403935s

    Article  CAS  PubMed  Google Scholar 

  22. Tao, Y., Gu, X., Deng, L., Qin, Y., Xue, H., Kong, Y.: Chiral recognition of D-tryptophan by confining high-energy water molecules inside the cavity of copper-modified β-cyclodextrin. J. Phys. Chem. C. 119, 8183–8190 (2015). https://doi.org/10.1021/acs.jpcc.5b00927

    Article  CAS  Google Scholar 

  23. Tao, Y., Gu, X., Yang, B., Deng, L., Bao, L., Kong, Y., Chu, F., Qin, Y.: Electrochemical enantioselective recognition in a highly ordered self-assembly framework. Anal. Chem. 89, 1900–1906 (2017). https://doi.org/10.1021/acs.analchem.6b04377

    Article  CAS  PubMed  Google Scholar 

  24. Ou, J., Zhu, Y., Kong, Y., Ma, J.: Graphene quantum dots/β-cyclodextrin nanocomposites: a novel electrochemical chiral interface for tryptophan isomer recognition. Electrochem. commun. 60, 60–63 (2015). https://doi.org/10.1016/j.elecom.2015.08.005

    Article  CAS  Google Scholar 

  25. Dong, S., Bi, Q., Qiao, C., Sun, Y., Zhang, X., Lu, X., Zhao, L.: Electrochemical sensor for discrimination tyrosine enantiomers using graphene quantum dots and β-cyclodextrins composites. Talanta 173, 94–100 (2017). https://doi.org/10.1016/j.talanta.2017.05.045

    Article  CAS  PubMed  Google Scholar 

  26. Xiong, S., Cheng, J., He, L., Wang, M., Zhang, X., Wu, Z.: Detection of di(2-ethylhexyl)phthalate through graphene-β-cyclodextrin composites by electrochemical impedance spectroscopy. Anal. Methods 6, 1736–1742 (2014). https://doi.org/10.1039/c3ay42039f

    Article  CAS  Google Scholar 

  27. Agnihotri, N., Chowdhury, A.D., De, A.: Non-enzymatic electrochemical detection of cholesterol using β-cyclodextrin functionalized graphene. Biosens. Bioelectron. 63, 212–217 (2015). https://doi.org/10.1016/j.bios.2014.07.037

    Article  CAS  PubMed  Google Scholar 

  28. Wei, M., Tian, D., Liu, S., Zheng, X., Duan, S., Zhou, C.: β-Cyclodextrin functionalized graphene material: A novel electrochemical sensor for simultaneous determination of 2-chlorophenol and 3-chlorophenol. Sensors Actuators B Chem. 195, 452–458 (2014). https://doi.org/10.1016/j.snb.2014.01.035

    Article  CAS  Google Scholar 

  29. Sivakumar, K., Ragi, T.R., Prema, D., Stalin, T.: Experimental and theoretical investigation on the structural characterization and orientation preferences of 2-hydroxy-1-naphthoic acid/β-cyclodextrin host-guest inclusion complex. J. Mol. Liq. 218, 538–548 (2016). https://doi.org/10.1016/j.molliq.2016.03.004

    Article  CAS  Google Scholar 

  30. Srinivasan, K., Stalin, T., Sivakumar, K.: Spectral and electrochemical study of host-guest inclusion complex between 2,4-dinitrophenol and β-cyclodextrin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 94, 89–100 (2012). https://doi.org/10.1016/j.saa.2012.03.066

    Article  CAS  Google Scholar 

  31. Srinivasan, K., Stalin, T., Shanmugapriya, A., Sivakumar, K.: Spectroscopic and electrochemical studies on the interaction of an inclusion complex of β-cyclodextrin with 2,6-dinitrophenol in aqueous and solid phases. J. Mol. Struct. 1036, 494–504 (2013). https://doi.org/10.1016/j.molstruc.2012.10.018

    Article  CAS  Google Scholar 

  32. Paramasivaganesh, K., Srinivasan, K., Manivel, A., Anandan, S., Sivakumar, K., Radhakrishnan, S., Stalin, T.: Studies on inclusion complexation between 4,4́-dihydroxybiphenyl and β-cyclodextrin by experimental and theoretical approach. J. Mol. Struct. 1048, 399–409 (2013). https://doi.org/10.1016/j.molstruc.2013.04.072

    Article  CAS  Google Scholar 

  33. Mohandoss, S., Stalin, T.: Photochemical and computational studies of inclusion complexes between β-cyclodextrin and 1,2-dihydroxyanthraquinones. Photochem. Photobiol. Sci. 16, 476–488 (2017). https://doi.org/10.1039/c6pp00285d

    Article  CAS  PubMed  Google Scholar 

  34. Pérez-Cruz, F., Aguilera-Venegas, B., Lapier, M., Sobarzo-Sánchez, E., Uriarte Villares, E., Olea-Azar, C.: Host-guest interaction between new nitrooxoisoaporphine and β-cyclodextrins: synthesis, electrochemical, electron spin resonance and molecular modeling studies. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 102, 226–234 (2013). https://doi.org/10.1016/j.saa.2012.09.068

    Article  CAS  Google Scholar 

  35. Alarcón-Angeles, G., Pérez-López, B., Palomar-Pardave, M., Ramírez-Silva, M.T., Alegret, S., Merkoçi, A.: Enhanced host-guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon N. Y. 46, 898–906 (2008). https://doi.org/10.1016/j.carbon.2008.02.025

    Article  CAS  Google Scholar 

  36. Yang, L., Xu, Y., Wang, X., Zhu, J., Zhang, R., He, P., Fang, Y.: The application of β-cyclodextrin derivative functionalized aligned carbon nanotubes for electrochemically DNA sensing via host-guest recognition. Anal. Chim. Acta. 689, 39–46 (2011). https://doi.org/10.1016/j.aca.2011.01.026

    Article  CAS  PubMed  Google Scholar 

  37. Le, H.N., Jeong, H.K.: β-cyclodextrin-graphite oxide-carbon nanotube composite for enhanced electrochemical supramolecular recognition. J. Phys. Chem. C. 119, 18671–18677 (2015). https://doi.org/10.1021/acs.jpcc.5b03363

    Article  CAS  Google Scholar 

  38. Rahemi, V., Vandamme, J.J., Garrido, J.M.P.J., Borges, F., Brett, C.M.A., Garrido, E.M.P.J.: Enhanced host-guest electrochemical recognition of herbicide MCPA using a β-cyclodextrin carbon nanotube sensor. Talanta 99, 288–293 (2012). https://doi.org/10.1016/j.talanta.2012.05.053

    Article  CAS  PubMed  Google Scholar 

  39. Abbaspour, A., Noori, A.: A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens. Bioelectron. 26, 4674–4680 (2011). https://doi.org/10.1016/j.bios.2011.04.061

    Article  CAS  PubMed  Google Scholar 

  40. Beiginejad, H., Bagheri, A., Yekta, L.S., Nojini, Z.B.: Thermodynamic studies of inclusion complex formation between alkylpyridinium chlorides and β-cyclodextrin using conductometric method. J. Incl. Phenom. Macrocycl. Chem. 67, 247–252 (2010). https://doi.org/10.1007/s10847-009-9704-9

    Article  CAS  Google Scholar 

  41. Shen, W.J., Zhuo, Y., Chai, Y.Q., Yang, Z.H., Han, J., Yuan, R.: Enzyme-free electrochemical immunosensor based on host-guest nanonets catalyzing amplification for procalcitonin detection. ACS Appl. Mater. Interfaces. 7, 4127–4134 (2015). https://doi.org/10.1021/am508137t

    Article  CAS  PubMed  Google Scholar 

  42. Jiang, J., Lin, X., Ding, D., Diao, G.: Enzyme-free homogeneous electrochemical biosensor for DNA assay using toehold-triggered strand displacement reaction coupled with host-guest recognition of Fe3O4@SiO2@β-CD nanocomposites. Biosens. Bioelectron. 114, 37–43 (2018). https://doi.org/10.1016/j.bios.2018.04.035

    Article  CAS  PubMed  Google Scholar 

  43. Swiech, O., Majdecki, M., Debinski, A., Krzak, A., Stȩpkowski, T.M., Wójciuk, G., Kruszewski, M., Bilewicz, R.: Competition between self-inclusion and drug binding explains the pH dependence of the cyclodextrin drug carrier-molecular modelling and electrochemistry studies. Nanoscale 8, 16733–16742 (2016). https://doi.org/10.1039/c6nr05833g

    Article  CAS  PubMed  Google Scholar 

  44. Guo, Y., Guo, S., Ren, J., Zhai, Y., Dong, S., Wang, E.: Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance. ACS Nano 4, 5512 (2010). https://doi.org/10.1021/nn101860d

    Article  CAS  Google Scholar 

  45. Guo, Y., Chen, Y., Zhao, Q., Shuang, S., Dong, C.: Electrochemical sensor for ultrasensitive determination of doxorubicin and methotrexate based on cyclodextrin-graphene hybrid nanosheets. Electroanalysis 23, 2400–2407 (2011). https://doi.org/10.1002/elan.201100259

    Article  CAS  Google Scholar 

  46. Liu, J., Chen, Y., Guo, Y., Yang, F., Cheng, F.: Electrochemical sensor for o-nitrophenol based on β-cyclodextrin functionalized graphene nanosheets. J. Nanomater. 2013, 1–6 (2013). https://doi.org/10.1155/2013/632809

    Article  CAS  Google Scholar 

  47. Hasanzadeh, M., Pournaghi-Azar, M.H., Shadjou, N., Jouyban, A.: Determination of lisinopril using β-cyclodextrin/graphene oxide-SO3H modified glassy carbon electrode. J. Appl. Electrochem. 44, 821–830 (2014). https://doi.org/10.1007/s10800-014-0689-8

    Article  CAS  Google Scholar 

  48. Zhang, M., Zhang, H., Zhai, X., Yang, X., Zhao, H., Wang, J., Dong, A., Wang, Z.: Application of β-cyclodextrin-reduced graphene oxide nanosheets for enhanced electrochemical sensing of the nitenpyram residue in real samples. New J. Chem. 41, 2169–2177 (2017). https://doi.org/10.1039/c6nj02891h

    Article  CAS  Google Scholar 

  49. Lu, D., Lin, S., Wang, L., Shi, X., Wang, C., Zhang, Y.: Synthesis of cyclodextrin-reduced graphene oxide hybrid nanosheets for sensitivity enhanced electrochemical determination of diethylstilbestrol. Electrochim. Acta. 85, 131–138 (2012). https://doi.org/10.1016/j.electacta.2012.07.071

    Article  CAS  Google Scholar 

  50. Guo, Y., Guo, S., Li, J., Wang, E., Dong, S.: Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim. Talanta 84, 60–64 (2011). https://doi.org/10.1016/j.talanta.2010.12.007

    Article  CAS  PubMed  Google Scholar 

  51. Fu, L., Lai, G., Yu, A.: Preparation of β-cyclodextrin functionalized reduced graphene oxide: application for electrochemical determination of paracetamol. RSC Adv. 5, 76973–76978 (2015). https://doi.org/10.1039/c5ra12520k

    Article  CAS  Google Scholar 

  52. Zaidi, S.A.: Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide. Biosens. Bioelectron. 94, 714–718 (2017). https://doi.org/10.1016/j.bios.2017.03.069

    Article  CAS  PubMed  Google Scholar 

  53. Wang, L., Wan, X., Zheng, R., Zhang, Y., Zi, Y., Huang, Y.: A novel β-cyclodextrin functionalized reduced graphene oxide electrochemical sensor for blood glucose detection. Int. J. Electrochem. Sci. 13, 1594–1602 (2018). https://doi.org/10.20964/2018.02.34

    Article  CAS  Google Scholar 

  54. Xu, C., Wang, J., Wan, L., Lin, J., Wang, X.: Microwave-assisted covalent modification of graphene nanosheets with hydroxypropyl-β-cyclodextrin and its electrochemical detection of phenolic organic pollutants. J. Mater. Chem. 21, 10463–10471 (2011). https://doi.org/10.1039/c1jm10478k

    Article  CAS  Google Scholar 

  55. Lv, M., Wang, X., Li, J., Yang, X., Zhang, C., Yang, J., Hu, H.: Cyclodextrin-reduced graphene oxide hybrid nanosheets for the simultaneous determination of lead(II) and cadmium(II) using square wave anodic stripping voltammetry. Electrochim. Acta. 108, 412–420 (2013). https://doi.org/10.1016/j.electacta.2013.06.099

    Article  CAS  Google Scholar 

  56. Liu, J., Leng, X., Xiao, Y., Hu, C., Fu, L.: 3D nitrogen-doped graphene/β-cyclodextrin: host-guest interactions for electrochemical sensing. Nanoscale. 7, 11922–11927 (2015). https://doi.org/10.1039/c5nr03109e

    Article  CAS  PubMed  Google Scholar 

  57. Li, C., Wu, Z., Yang, H., Deng, L., Chen, X.: Reduced graphene oxide-cyclodextrin-chitosan electrochemical sensor: Effective and simultaneous determination of o- and p-nitrophenols. Elsevier, New York (2017)

    Google Scholar 

  58. Wu, S., Fan, S., Tan, S., Wang, J., Li, C.P.: A new strategy for the sensitive electrochemical determination of nitrophenol isomers using β-cyclodextrin derivative-functionalized silicon carbide. RSC Adv. 8, 775–784 (2018). https://doi.org/10.1039/c7ra12715d

    Article  CAS  Google Scholar 

  59. Sun, L., Zhang, H., An, W., Hao, A., Hao, J.: Vesicles prepared by β-cyclodextrins inclusion complexes based on switching supramolecular interaction models induced by mixed solvents. J. Incl. Phenom. Macrocycl. Chem. 68, 277–285 (2010). https://doi.org/10.1007/s10847-010-9785-5

    Article  CAS  Google Scholar 

  60. Lee, S.H., Lee, S.S.: Electrochemical quantitative analysis of nucleic acids using β-cyclodextrin modified gold electrode. Electroanalysis 29, 1166–1171 (2017). https://doi.org/10.1002/elan.201600686

    Article  CAS  Google Scholar 

  61. Ihara, T., Wasano, T., Nakatake, R., Arslan, P., Futamura, A., Jyo, A.: Electrochemical signal modulation in homogeneous solutions using the formation of an inclusion complex between ferrocene and β-cyclodextrin on a DNA scaffold. Chem. Commun. 47, 12388–12390 (2011). https://doi.org/10.1039/c1cc15365j

    Article  CAS  Google Scholar 

  62. Yang, Y., Gao, F., Cai, X., Yuan, X., He, S., Gao, F., Guo, H., Wang, Q.: β-Cyclodextrin functionalized graphene as a highly conductive and multi-site platform for DNA immobilization and ultrasensitive sensing detection. Biosens. Bioelectron. 74, 447–453 (2015). https://doi.org/10.1016/j.bios.2015.06.018

    Article  CAS  PubMed  Google Scholar 

  63. Jiang, J., Lin, X., Diao, G.: Smart combination of cyclodextrin polymer host-guest recognition and Mg2+-assistant cyclic cleavage reaction for sensitive electrochemical assay of nucleic acids. ACS Appl. Mater. Interfaces. 9, 36688–36694 (2017). https://doi.org/10.1021/acsami.7b13132

    Article  CAS  PubMed  Google Scholar 

  64. Fan, H., Li, H., Wang, Q., He, P., Fang, Y.: A host-guest-recognition-based electrochemical aptasensor for thrombin detection. Biosens. Bioelectron. 35, 33–36 (2012). https://doi.org/10.1016/j.bios.2012.01.027

    Article  CAS  PubMed  Google Scholar 

  65. Wang, L., Lei, J., Ma, R., Ju, H.: Host-guest interaction of adamantine with a β-cyclodextrin- functionalized AuPd bimetallic nanoprobe for ultrasensitive electrochemical immunoassay of small molecules. Anal. Chem. 85, 6505–6510 (2013). https://doi.org/10.1021/ac401105p

    Article  CAS  PubMed  Google Scholar 

  66. Veerbeek, J., Méndez-Ardoy, A., Huskens, J.: Electrochemistry of redox-active guest molecules at β-cyclodextrin-functionalized silicon electrodes. ChemElectroChem. 4, 1470–1477 (2017). https://doi.org/10.1002/celc.201600872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xie, S., Zhang, J., Yuan, Y., Chai, Y., Yuan, R.: An electrochemical peptide cleavage-based biosensor for prostate specific antigen detection via host-guest interaction between ferrocene and β-cyclodextrin. Chem. Commun. 51, 3387–3390 (2015). https://doi.org/10.1039/c4cc10363g

    Article  CAS  Google Scholar 

  68. Méndez-Ardoy, A., Steentjes, T., Boukamp, B.A., Jonkheijm, P., Kudernac, T., Huskens, J.: Electron-transfer rates in host-guest assemblies at β-cyclodextrin monolayers. Langmuir 33, 8614–8623 (2017). https://doi.org/10.1021/acs.langmuir.6b03860

    Article  CAS  PubMed  Google Scholar 

  69. Palanisamy, S., Thirumalraj, B., Chen, S.M.: A novel amperometric nitrite sensor based on screen printed carbon electrode modified with graphite/β-cyclodextrin composite. J. Electroanal. Chem. 760, 97–104 (2016). https://doi.org/10.1016/j.jelechem.2015.11.017

    Article  CAS  Google Scholar 

  70. Palanisamy, S., Sakthinathan, S., Chen, S.M., Thirumalraj, B., Wu, T.H., Lou, B.S., Liu, X.: Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine. Carbohydr. Polym. 135, 267–273 (2016). https://doi.org/10.1016/j.carbpol.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  71. Gong, C.Bin, Guo, C.C., Jiang, D., Tang, Q., Liu, C.H., Ma, X.B.: Graphene-cyclodextrin-cytochrome c layered assembly with improved electron transfer rate and high supramolecular recognition capability. Mater. Sci. Eng. C. 39, 281–287 (2014). https://doi.org/10.1016/j.msec.2014.03.010

    Article  CAS  Google Scholar 

  72. Zhou, H., Yamada, T., Kimizuka, N.: Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host-guest complexation and salt-induced crystallization. J. Am. Chem. Soc. 138, 10502–10507 (2016). https://doi.org/10.1021/jacs.6b04923

    Article  CAS  PubMed  Google Scholar 

  73. Liška, A., Flídrová, K., Lhoták, P., Ludvík, J.: Influence of structure on electrochemical reduction of isomeric mono- and di-, nitro- or nitrosocalix[4]arenes. Monatshefte fur Chemie. 146, 857–862 (2015). https://doi.org/10.1007/s00706-015-1441-8

    Article  CAS  Google Scholar 

  74. Diao, G., Zhou, W.: The electrochemical behavior of p-sulfonated calix[4]arene. J. Electroanal. Chem. 567, 325–330 (2004). https://doi.org/10.1016/j.jelechem.2004.01.016

    Article  CAS  Google Scholar 

  75. Pailleret, A., Herzog, G., Arrigan, D.W.M.: Electrochemical activity of phenolic calixarenes. Electrochem. commun. 5, 68–72 (2003). https://doi.org/10.1016/S1388-2481(02)00539-8

    Article  CAS  Google Scholar 

  76. Takahashi, Y., Fujihara, T., Kobayashi, N., Nakabayashi, S., Miskolczy, Z., Biczók, L.: Electron transfer kinetics of methylviologen included in 4-sulfonatocalix[n]arenes at glassy carbon electrode; adiabaticity and activation energy. Chem. Phys. Lett. 708, 222–227 (2018). https://doi.org/10.1016/j.cplett.2018.08.005

    Article  CAS  Google Scholar 

  77. Hrdlička, V., Navrátil, T., Barek, J., Ludvík, J.: Electrochemical behavior of polycrystalline gold electrode modified by thiolated calix[4]arene and undecanethiol. J. Electroanal. Chem. 821, 60–66 (2018). https://doi.org/10.1016/j.jelechem.2018.01.055

    Article  CAS  Google Scholar 

  78. Yang, J., Li, Z., Tan, W., Wu, D., Tao, Y., Kong, Y.: Construction of an electrochemical chiral interface by the self-assembly of chiral calix[4]arene and cetyltrimethylammonium bromide for recognition of tryptophan isomers. Electrochem. commun. 96, 22–26 (2018). https://doi.org/10.1016/j.elecom.2018.09.005

    Article  CAS  Google Scholar 

  79. Mokhtari, B., Pourabdollah, K.: Binding study of ionizable calix[4]-1,3-crowns-5,6 nano-baskets by differential pulse voltammetry. J. Electrochem. Soc. 159, K61–K65 (2012). https://doi.org/10.1149/2.048203jes

    Article  CAS  Google Scholar 

  80. Mokhtari, B., Pourabdollah, K.: Binding survey of ionizable calix[4]-1,2-crown-3 nano-baskets by differential pulse voltammetry. Electroanalysis 24, 219–223 (2012). https://doi.org/10.1002/elan.201100584

    Article  CAS  Google Scholar 

  81. Mokhtari, B., Pourabdollah, K.: Electrochemical investigation of nano-baskets of calix[4]-1,3-crowns-5,6 complexes. J. Incl. Phenom. Macrocycl. Chem. 76, 385–390 (2013). https://doi.org/10.1007/s10847-012-0210-0

    Article  CAS  Google Scholar 

  82. Wang, F., Wei, X., Wang, C., Zhang, S., Ye, B.: Langmuir-Blodgett film of p-tert-butylthiacalix[4]arene modified glassy carbon electrode as voltammetric sensor for the determination of Hg(II). Talanta 80, 1198–1204 (2010). https://doi.org/10.1016/j.talanta.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  83. Zheng, H., Yan, Z., Dong, H., Ye, B.: Simultaneous determination of lead and cadmium at a glassy carbon electrode modified with Langmuir-Blodgett film of p-tert-butylthiacalix[4]arene. Sens Actuators B Chem. 120, 603–609 (2007). https://doi.org/10.1016/j.snb.2006.03.032

    Article  CAS  Google Scholar 

  84. Wang, L., Zhao, B.T., Ye, B.X.: Electrochemical properties of electrode modified with Langmuir-Blodgett film of p-tert-butylcalix[4]arene derivatives and its application in determining of silver. Electroanalysis 19, 923–927 (2007). https://doi.org/10.1002/elan.200603770

    Article  CAS  Google Scholar 

  85. Dong, H., Lin, L., Zheng, H., Zhao, G., Ye, B.: Electrode modified with Langmuir-Blodgett (LB) film of calixarenes for preconcentration and stripping analysis of Hg(II). Electroanalysis 18, 1202–1207 (2006). https://doi.org/10.1002/elan.200603520

    Article  CAS  Google Scholar 

  86. Kawaguchi, M., Ikeda, A., Shinkai, S., Neda, I.: Electrochemical studies of calixarene-[60]fullerene inclusion processes. J. Incl. Phenom. 37, 253–258 (2000). https://doi.org/10.1023/A:1008056229653

    Article  CAS  Google Scholar 

  87. Wang, K., Guo, D.S., Wang, X., Liu, Y.: Multistimuli responsive supramolecular vesicles based on the recognition of p -sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano 5, 2880–2894 (2011). https://doi.org/10.1021/nn1034873

    Article  CAS  PubMed  Google Scholar 

  88. Chung, T.D., Kim, H.: Electrochemistry of calixarene and its analytical applications. J. Incl. Phenom. Mol. Recognit. Chem. 32, 179–193 (1998). https://doi.org/10.1023/A:1008059326436

    Article  CAS  Google Scholar 

  89. Zhang, L., MacÍas, A., Lu, T., Gordon, J.I., Gokel, G.W., Kaifer, A.E.: Calixarenes as hosts in aqueous media: inclusion complexation of ferrocene derivatives by a water-soluble calix[6]arene. J. Chem. Soc. Chem. Commun. (1993). https://doi.org/10.1039/C39930001017

    Article  Google Scholar 

  90. Saravanan, C., Chitumalla, R.K., Ashwin, B.C.M.A., Senthilkumaran, M., Suresh, P., Jang, J., Muthu Mareeswaran, P.: Effectual binding of gallic acid with p-sulfonatocalix[4]arene: An experimental and theoretical interpretation. J. Lumin. (2018). https://doi.org/10.1016/j.jlumin.2017.12.063

    Article  Google Scholar 

  91. Senthilkumaran, M., Saravanan, C., Ashwin, B.C.M.A., Shanmugavelan, P., Muthu Mareeswaran, P., Prakash, M.: Inclusion induced water solubility and binding investigation of acenaphthene-1,2-dione with p-sulfonatocalix[4]arene. J. Incl. Phenom. Macrocycl. Chem. (2020). https://doi.org/10.1007/s10847-020-01017-7

    Article  Google Scholar 

  92. Saravanan, C., Ashwin, B.C.M.A., Senthilkumaran, M., Mareeswaran, P.M.: Supramolecular complexation of biologically important thioflavin-t with p-sulfonatocalix[4]arene. ChemistrySelect (2018). https://doi.org/10.1002/slct.201702937

    Article  Google Scholar 

  93. Saravanan, C., Senthilkumaran, M., Ashwin, B.C.M.A., Suresh, P., Muthu Mareeswaran, P.: Spectral and electrochemical investigation of 1,8-diaminonaphthalene upon encapsulation of p-sulfonatocalix[4]arene. J. Incl. Phenom. Macrocycl. Chem. 88, 239–246 (2017). https://doi.org/10.1007/s10847-017-0729-1

    Article  CAS  Google Scholar 

  94. Saravanan, C., Kumar Chitumalla, R., Yuvakumar, R., Shanmugavelan, P., Mareeswaran, P.M., Jang, J.: Experimental and theoretical investigations on the host-guest interaction of diphenylamine with p-sulfonatocalix[4]arene. Indian J. Chem. 59, 929–938 (2020)

    Google Scholar 

  95. Ashwin, B.C.M.A., Herculin Arun Baby, A., Prakash, M., Hochlaf, M., Muthu Mareeswaran, P.: A combined experimental and theoretical study on p-sulfonatocalix[4]arene encapsulated 7-methoxycoumarin. J. Phys. Org. Chem. 31, 1–11 (2018). https://doi.org/10.1002/poc.3788

    Article  CAS  Google Scholar 

  96. Ashwin, B.C.M.A., Chitumalla, R.K., HerculinArunBaby, A., Jang, J., Muthu Mareeswaran, P.: Spectral, electrochemical and computational investigations on the host–guest interaction of Coumarin-460 with p-sulfonatocalix[4]arene. J. Incl. Phenom. Macrocycl. Chem. 90, 51–60 (2018). https://doi.org/10.1007/s10847-017-0762-0

    Article  CAS  Google Scholar 

  97. Ashwin, B.C.M.A., Vinothini, A., Stalin, T., Muthu Mareeswaran, P.: Synthesis of a safranin T - p-Sulfonatocalix[4]arene complex by means of supramolecular complexation. ChemistrySelect. 2, 931–936 (2017). https://doi.org/10.1002/slct.201601939

    Article  CAS  Google Scholar 

  98. Ashwin, B.C.M.A., Saravanan, C., Senthilkumaran, M., Sumathi, R., Suresh, P., Muthu Mareeswaran, P.: Spectral and electrochemical investigation of p-sulfonatocalix[4]arene-stabilized vitamin E aggregation. Supramol. Chem. 30, 32–41 (2018). https://doi.org/10.1080/10610278.2017.1351612

    Article  CAS  Google Scholar 

  99. Kui, W., Guo, D.S., Zhang, H.Q., Dong, L., Zheng, X.L., Yu, L.: Highly effective binding of viologens by p-sulfonatocalixarenes for the treatment of viologen poisoning. J. Med. Chem. 52, 6402–6412 (2009). https://doi.org/10.1021/jm900811z

    Article  CAS  Google Scholar 

  100. Guo, D.S., Wang, L.H., Liu, Y.: Highly effective binding of methyl viologen dication and its radical cation by p-sulfonatocalix[4,5]arenes. J. Org. Chem. 72, 7775–7778 (2007). https://doi.org/10.1021/jo701304g

    Article  CAS  PubMed  Google Scholar 

  101. Madasamy, K., Gopi, S., Kumaran, M.S., Radhakrishnan, S., Velayutham, D., Mareeswaran, P.M., Kathiresan, M.: A Supramolecular Investigation on the Interactions between ethyl terminated Bis–viologen derivatives with sulfonato calix[4]arenes. ChemistrySelect 2, 1175–1182 (2017). https://doi.org/10.1002/slct.201601818

    Article  CAS  Google Scholar 

  102. Wang, K., Yang, E.C., Zhao, X.J., Liu, Y.: High affinity of p-sulfonatothiacalix[4]arene with phenanthroline-diium in aqueous solution. RSC Adv. 5, 2640–2646 (2015). https://doi.org/10.1039/c4ra15047c

    Article  CAS  Google Scholar 

  103. Zhou, J., Chen, M., Diao, G.: Calix[4,6,8]arenesulfonates functionalized reduced graphene oxide with high supramolecular recognition capability: Fabrication and application for enhanced host-guest electrochemical recognition. ACS Appl. Mater. Interfaces. 5, 828–836 (2013). https://doi.org/10.1021/am302289v

    Article  CAS  PubMed  Google Scholar 

  104. Kim, H.J., Lee, M.H., Mutihac, L., Vicens, J., Kim, J.S.: Host-guest sensing by calixarenes on the surfaces. Chem. Soc. Rev. 41, 1173–1190 (2012). https://doi.org/10.1039/c1cs15169j

    Article  CAS  PubMed  Google Scholar 

  105. Gale, P.A., Chen, Z., Drew, M.G.B., Heath, J.A., Beer, P.D.: Lower-rim ferrocenyl substituted calixarenes: new electrochemical sensors for anions. Polyhedron 17, 405–412 (1998). https://doi.org/10.1016/S0277-5387(97)00389-6

    Article  CAS  Google Scholar 

  106. Credi, A., Dumas, S., Silvi, S., Venturi, M., Arduini, A., Pochini, A., Secchi, A.: Viologen-calix[6]arene pseudorotaxanes. Ion-pair recognition and threading/dethreading molecular motions. J. Org. Chem. 69, 5881–5887 (2004). https://doi.org/10.1021/jo0494127

    Article  CAS  PubMed  Google Scholar 

  107. Kurzątkowska, K., Sayin, S., Yilmaz, M., Radecka, H., Radecki, J.: Calix[4]arene derivatives as dopamine hosts in electrochemical sensors. Sensors Actuators B Chem. 218, 111–121 (2015). https://doi.org/10.1016/j.snb.2015.04.110

    Article  CAS  Google Scholar 

  108. Šnejdárková, M., Poturnayová, A., Rybár, P., Lhoták, P., Himl, M., Flídrová, K., Hianik, T.: High sensitive calixarene-based sensor for detection of dopamine by electrochemical and acoustic methods. Bioelectrochemistry 80, 55–61 (2010). https://doi.org/10.1016/j.bioelechem.2010.03.006

    Article  CAS  PubMed  Google Scholar 

  109. Zheng, G., Shen, C., Huan, L., Zhao, R., Chen, M., Diao, G.: Electrochemical detection dopamine by Ester-calix[n]arenes/graphene nanosheets modified electrodes. J. Electroanal. Chem. 804, 16–22 (2017). https://doi.org/10.1016/j.jelechem.2017.09.037

    Article  CAS  Google Scholar 

  110. Zheng, G., Chen, M., Liu, X., Zhou, J., Xie, J., Diao, G.: Self-assembled thiolated calix[n]arene (n=4, 6, 8) films on gold electrodes and application for electrochemical determination dopamine. Electrochim. Acta. 136, 301–309 (2014). https://doi.org/10.1016/j.electacta.2014.05.086

    Article  CAS  Google Scholar 

  111. Lai, G.S., Zhang, H.L., Jin, C.M.: Electrocatalysis and voltammetric determination of dopamine at a calix[4]arene crown-4 ether modified glassy carbon electrode. Electroanalysis 19, 496–501 (2007). https://doi.org/10.1002/elan.200603751

    Article  CAS  Google Scholar 

  112. Hassen, W.M., Martelet, C., Davis, F., Higson, S.P.J., Abdelghani, A., Helali, S., Jaffrezic-Renault, N.: Calix[4]arene based molecules for amino-acid detection. Sensors Actuators B Chem. 124, 38–45 (2007). https://doi.org/10.1016/j.snb.2006.11.044

    Article  CAS  Google Scholar 

  113. Zhang, H.L., Liu, Y., Lai, G.S., Yu, A.M., Huang, Y.M., Jin, C.M.: Calix[4]arene crown-4 ether modified glassy carbon electrode for electrochemical determination of norepinephrine. Analyst 134, 2141–2146 (2009). https://doi.org/10.1039/b909805d

    Article  CAS  PubMed  Google Scholar 

  114. Amiri, A., Choi, E.Y., Kim, H.J.: Development and molecular recognition of Calixcrownchip as an electrochemical ALT immunosensor. J. Incl. Phenom. Macrocycl. Chem. 66, 185–194 (2010). https://doi.org/10.1007/s10847-009-9702-y

    Article  CAS  Google Scholar 

  115. Vaze, V.D., Srivastava, A.K.: Electrochemical behavior of folic acid at calixarene based chemically modified electrodes and its determination by adsorptive stripping voltammetry. Electrochim. Acta. 53, 1713–1721 (2007). https://doi.org/10.1016/j.electacta.2007.08.017

    Article  CAS  Google Scholar 

  116. Patra, S., Paul, P.: Synthesis, characterization, electrochemistry and ion-binding studies of ruthenium(II) bipyridine receptor molecules containing calix[4]arene-azacrown as ionophore. Trans Dalt (2009). https://doi.org/10.1039/b905695e

    Article  Google Scholar 

  117. De Leener, G., Evoung-Evoung, F., Lascaux, A., Mertens, J., Porras-Gutierrez, A.G., Le Poul, N., Lagrost, C., Over, D., Leroux, Y.R., Reniers, F., Hapiot, P., Le Mest, Y., Jabin, I., Reinaud, O.: Immobilization of monolayers incorporating Cu funnel complexes onto gold electrodes application to the selective electrochemical recognition of primary alkylamines in water. J. Am. Chem. Soc. 138, 12841–12853 (2016). https://doi.org/10.1021/jacs.6b05317

    Article  CAS  PubMed  Google Scholar 

  118. Pizarro, J., Flores, E., Jimenez, V., Maldonado, T., Saitz, C., Vega, A., Godoy, F., Segura, R.: Synthesis and characterization of the first cyrhetrenyl-appended calix[4]arene macrocycle and its application as an electrochemical sensor for the determination of Cu(II) in bivalve mollusks using square wave anodic stripping voltammetry. Sensors Actuators, B Chem. 281, 115–122 (2019). https://doi.org/10.1016/j.snb.2018.09.099

    Article  CAS  Google Scholar 

  119. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chemie - Int. Ed. 44, 4844–4870 (2005). https://doi.org/10.1002/anie.200460675

    Article  CAS  Google Scholar 

  120. Sindelar, V., Parker, S.E., Kaifer, A.E.: Inclusion of anthraquinone derivatives by the cucurbit[7]uril host. New J. Chem. 31, 725–728 (2007). https://doi.org/10.1039/b615803j

    Article  CAS  Google Scholar 

  121. Ong, W., Kaifer, A.E.: Unusual electrochemical properties of the inclusion complexes of ferrocenium and cobaltocenium with cucurbit[7]uril. Organometallics 22, 4181–4183 (2003). https://doi.org/10.1021/om030305x

    Article  CAS  Google Scholar 

  122. Cui, L., Gadde, S., Li, W., Kaifer, A.E.: Electrochemistry of the inclusion complexes formed between the cucurbit [7]uril host and several cationic and neutral ferrocene derivatives. Langmuir 25, 13763–13769 (2009). https://doi.org/10.1021/la9015096

    Article  CAS  PubMed  Google Scholar 

  123. Mitkina, T.V., Zakharchuk, N.F., Naumov, D.Y., Gerasko, O.A., Fenske, D., Fedin, V.P.: Syntheses, structures, and electrochemical properties of inclusion compounds of cucurbit[8]uril with cobalt(III) and nickel(II) complexes. Inorg. Chem. 47, 6748–6755 (2008). https://doi.org/10.1021/ic8003036

    Article  CAS  PubMed  Google Scholar 

  124. Huang, Y., Xue, S.F., Tao, Z., Zhu, Q.J., Ma, Y.H., Zhong, S.H.: Voltammetric studies of the interaction of 6-mercaptopurine with cucurbit[7]uril and DNA. J. Incl. Phenom. Macrocycl. Chem. 69, 131–137 (2011). https://doi.org/10.1007/s10847-010-9823-3

    Article  CAS  Google Scholar 

  125. Jin, X.Y., Zhao, J.L., Wang, F., Cong, H., Tao, Z.: Formation of an interaction complex of hemicucurbit[6]uril and ferrocene. J. Organomet. Chem. 846, 1–5 (2017). https://doi.org/10.1016/j.jorganchem.2017.05.053

    Article  CAS  Google Scholar 

  126. Zhang, W., Gan, S., Vezzoli, A., Davidson, R.J., Milan, D.C., Luzyanin, K.V., Higgins, S.J., Nichols, R.J., Beeby, A., Low, P.J., Li, B., Niu, L.: Single-molecule conductance of viologen-cucurbit[8]uril host-guest complexes. ACS Nano 10, 5212–5220 (2016). https://doi.org/10.1021/acsnano.6b00786

    Article  CAS  PubMed  Google Scholar 

  127. An, Q., Brinkmann, J., Huskens, J., Krabbenborg, S., De Boer, J., Jonkheijm, P.: A supramolecular system for the electrochemically controlled release of cells. Angew. Chemie Int. Ed. 51, 12233–12237 (2012). https://doi.org/10.1002/anie.201205651

    Article  CAS  Google Scholar 

  128. Ji, H., Liu, F., Sun, S.: Study of the counter anions in the host-guest chemistry of cucurbit[8]uril and 1-ethyl-1′-benzyl-4,4′-bipyridinium. World J Sci (2013). https://doi.org/10.1155/2013/452056

    Article  Google Scholar 

  129. Del Pozo, M., Hernández, P., Hernández, L., Quintana, C.: The use of cucurbit[8]uril host-guest interactions in the development of an electrochemical sensor: Characterization and application to tryptophan determination. J. Mater. Chem. 21, 13657–13663 (2011). https://doi.org/10.1039/c1jm12063h

    Article  CAS  Google Scholar 

  130. Lin, R.L., Dong, Y.P., Hu, Y.F., Liu, J.X., Bai, L.S., Gao, J.Y., Zhu, H.L., Zhao, J.: Inclusion of methylviologen in symmetrical α, α′, δ, δ′-tetramethyl-cucurbit[6]uril. RSC Adv. 2, 7754–7758 (2012). https://doi.org/10.1039/c2ra20918g

    Article  CAS  Google Scholar 

  131. Yi, S., Li, W., Nieto, D., Cuadrado, I., Kaifer, A.E.: Probing the tolerance of cucurbit[7]uril inclusion complexes to small structural changes in the guest. Org. Biomol. Chem. 11, 287–293 (2013). https://doi.org/10.1039/c2ob26834e

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of Department of Science and Technology (DST INSPIRE) [Project Number—IFA14/ CH-147], India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulpandian Muthu Mareeswaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwin, B.C.M.A., Shanmugavelan, P. & Muthu Mareeswaran, P. Electrochemical aspects of cyclodextrin, calixarene and cucurbituril inclusion complexes. J Incl Phenom Macrocycl Chem 98, 149–170 (2020). https://doi.org/10.1007/s10847-020-01028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-01028-4

Keywords

Navigation