Skip to main content
Log in

Quantitative ROESY analysis for unravelling structure of glafenine and β-cyclodextrin complex

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Inclusion complex between glafenine hydrochloride (GLF) and β-cyclodextrin (β-CD) in aqueous medium was studied through a combination of experimental and computational studies in synergism with a scheme of quantitative Rotating frame Overhauser Effect Spectroscopy (ROESY) analysis that puts forth the means to analyse the computational models. Upon confirmation of the 1:1 inclusion complex formation by the shift in the β-CD cavity protons, intermolecular ROESY contacts were studied to interpret the portions of GLF engulfed. Docking studies showed that all the conformations involved ring A of GLF complexed which was in tune with the ROESY studies. Molecular mechanics (MM) studies were performed for ring A in two orientations from both cavity ends which helped in perceiving the inclusion mode. Minimum energy structures from the MM and molecular dynamics simulation studies were analysed quantitatively for obtaining the structure of the averaged ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Clark, J.L., Booth, B.R., Stezowski, J.J.: Molecular recognition in cyclodextrin complexes of amino acid derivatives. 2. A new perturbation: the room-temperature crystallographic structure determination for the N-acetyl-p-methoxy-l-phenylalanine methyl ester/β-cyclodextrin complex. J. Am. Chem. Soc. 123, 9889–9895 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Grasso, G.I., Bellia, F., Arena, G., Vecchio, G., Rizzarelli, E.: Noncovalent interaction-driven stereoselectivity of copper(II) complexes with cyclodextrin derivatives of l- and d-carnosine. Inorg. Chem. 50, 4917–4924 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. Rakmai, J., Cheirsilp, B., Mejuto, J.C., Gándarac, J.S., Agrasar, A.T.: Antioxidant and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-beta-cyclodextrin. Ind. Crops Prod. 111, 219–225 (2018)

    Article  CAS  Google Scholar 

  4. Cui, H., Bai, M., Lin, L.: Plasma-treated poly(ethylene oxide) nanofibers containing tea tree oil/beta cyclodextrin inclusion complex for antibacterial packaging. Carbohydr. Polym. 179, 360–369 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. Lee, D.W., Jo, J., Jo, D., Kim, J., Min, J.J., Yang, D.H., Hyun, H.: Supramolecular assembly based on host–guest interaction between beta-cyclodextrin and adamantane for specifically targeted cancer imaging. J. Ind. Eng. Chem. 57, 37–44 (2018)

    Article  CAS  Google Scholar 

  6. Dubaili, N.A., Tarabily, K.E., Saleh, N.: Host–guest complexes of imazalil with cucurbit [8]uril and β-cyclodextrin and their effect on plant pathogenic fungi. Sci. Rep. 8(2839), 1–10 (2018)

    Google Scholar 

  7. Kellett, K., Kantonen, S.A., Duggan, B.M., Gilson, M.K.: Toward expanded diversity of host–guest interactions via synthesis and characterization of cyclodextrin derivatives. J. Solut. Chem. 47, 1–12 (2018)

    Article  CAS  Google Scholar 

  8. Hardy, A., Seguin, C., Brion, A., Lavalle, P., Schaaf, P., Fournel, S., Bonnet, L.B., Frisch, B., Giorg, M.D.: β-Cyclodextrin-functionalized chitosan/alginate compact polyelectrolyte complexes (CoPECs) as functional biomaterials with anti-inflammatory properties. Appl. Mater. Interfaces 10, 29347–29356 (2018)

    Article  CAS  Google Scholar 

  9. Carrier, R.L., Miller, L.A., Ahmed, I.: The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release 123, 78–99 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  CAS  Google Scholar 

  11. Astray, G., Barreiro, C.G., Mejuto, J.C., Otero, R.R., Gándara, J.S.: A review on the use of cyclodextrins in foods. Food Hydrocoll. 23, 1631–1640 (2009)

    Article  CAS  Google Scholar 

  12. Centini, M., Maggiore, M., Andreassi, M.C.M., Facino, R.M., Anselm, C.: Cyclodextrins as cosmetic delivery systems. J. Incl. Phenom. Macrocycl. Chem. 57, 109–112 (2007)

    Article  CAS  Google Scholar 

  13. Veiga, F.J.B., Fernandes, C.M., Carvalho, R.A., Geraldes, C.F.G.C.: Molecular modelling and 1H-NMR: ultimate tools for the investigation of tolbutamide:β-cyclodextrin and tolbutamide:hydroxypropyl-β-cyclodextrin complexes. Chem. Pharm. Bull. 49, 1251–1256 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Aksamija, A., Polidori, A., Plasson, R., Dangles, O., Tomao, V.: The inclusion complex of rosmarinic acid into beta-cyclodextrin: a thermodynamic and structural analysis by NMR and capillary electrophoresis. Food Chem. 208, 258–263 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. Ali, S.M., Muzaffar, S.: Validating strategy of quantitative ROESY analysis for structure determination of cyclodextrin inclusion complexes. J. Mol. Struct. 1176, 461–469 (2019)

    Article  CAS  Google Scholar 

  16. Butts, C.P., Jones, C.R., Song, Z., Simpson, T.J.: Accurate NOE-distance determination enables the stereochemical assignment of a flexible molecule—arugosin C. Chem. Commun. 48, 9023–9025 (2012)

    Article  CAS  Google Scholar 

  17. Ali, S.M., Shamim, S.: Analysis of computational models of b-cyclodextrin complexes: structural studies of morniflumate hydrochloride and β-cyclodextrin complex in aqueous solution by quantitative ROESY analysis. J. Incl. Phenom. Macrocycl. Chem. 83, 19–26 (2015)

    Article  CAS  Google Scholar 

  18. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  19. Floresta, G., Rescifina, A.: Metyrapone-β-cyclodextrin supramolecular interactions inferred by complementary spectroscopic/spectrometric and computational studies. J. Mol. Struct. 1176, 815–824 (2019)

    Article  CAS  Google Scholar 

  20. Allinger, N.L.: Conformational analysis 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99, 8127–8134 (1977)

    Article  CAS  Google Scholar 

  21. Fifere, A., Marangoci, N., Maier, S., Coroaba, A., Maftei, D., Pinteala, M.: Theoretical study on β-cyclodextrin inclusion complexes with propiconazole and protonated propiconazole. Beilstein J. Org. Chem. 8, 2191–2201 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ali, S.M., Shamim, S.: Quantitative ROESY analysis of computational models: structural studies of citalopram and β-cyclodextrin complexes by 1H-NMR and computational methods. Magn. Reson. Chem. 53, 526–535 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

β-CD was generously provided by Geertrui Haest, Cerestar Application Centre, Food and Pharma Specialities, France. Sughra Muzaffar is thankful to UGC, Government of India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mashhood Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.M., Muzaffar, S. Quantitative ROESY analysis for unravelling structure of glafenine and β-cyclodextrin complex. J Incl Phenom Macrocycl Chem 94, 95–102 (2019). https://doi.org/10.1007/s10847-019-00911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00911-z

Keywords

Navigation