Skip to main content
Log in

Quantum chemical investigations on hydrogen bonding interactions established in the inclusion complex β-cyclodextrin/benzocaine through the DFT, AIM and NBO approaches

  • Short Communication
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Structure and stability of an inclusion complex formed by Benzocaine (BZC) and β-cyclodextrin (β-CD) were investigated computationally using different levels of theory. The conformational research based on PM6 method allowed reach two minimum-energy structures: model A and model B. The lowest conformers have been exposed to fully geometry optimization employing four DFT functionals: B3LYP, CAM-B3LYP, M05-2X and M06-2X. The performed DFT calculations have identified the model B, in which the amino group is located at the primary face of β-CD, as the most stable complex by an amount up to −40 kcal/mol. Further, the greater stabilization of model B in respect to model A, has been ascertained through AIM and NBO analyses which clarified the main hydrogen bonds HBs interactions governing the reactivity of BZC inside the hydrophobic cavity of β-CD. Finally, the estimated isotropic 1H nuclear magnetic shielding constants generated from the gauge-including-atomic-orbital calculation have been analyzed and then compared with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Li, N., Zhang, Y.H., Xiong, X.L., Li, Z.G., Jin, H.H., Wu, Y.N.: Study of the physicochemical properties of trimethoprim with beta-cyclodextrin in solution. J. Pharm. Biomed. Anal. 38, 370–374 (2005)

    Article  CAS  Google Scholar 

  2. Al-Marzouqi, A., Jobe, B., Corti, G., Cirri, M., Mura, P.: Physicochemical characterization of drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Incl. Phenom. Macrocycl. Chem. 57, 223–231 (2007)

    Article  CAS  Google Scholar 

  3. Jullian, C., Alfaro, M., Zapata-Torres, G., Olea-Azar, C.: Inclusion complexes of cyclodextrins with galangin: a thermodynamic and reactivity study. J. Solut. Chem. 39, 1168–1177 (2010)

    Article  CAS  Google Scholar 

  4. De Sousa, S.M.R., Fernandes, S.A., De Almeida, W.B., Guimarães, L., Abranches, P.A.S., Varejão, E.V.V., Nascimento, C.S.: Theoretical investigation on the molecular inclusion process of prilocaine into p-sulfonic acid calix[6]arene. Chem. Phys. Lett. 646, 52–55 (2016)

    Article  Google Scholar 

  5. Di Marino, A., Mendicuti, F.: Fluorimetric and molecular mechanics study of the inclusion complex of 2-quinoxalinyl-phenoxathiin with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 57, 97–601 (2007)

    Google Scholar 

  6. Loftsson, T., Brewester, M.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

  7. Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J. Pharm. Sci. 85, 1142–1168 (1996)

    Article  CAS  Google Scholar 

  8. Pose-Vilarnovo, B., Perdomo-Lopez, I., Echezarreta-Lopez, M., Schroth-Pardo, P., Estrada, E., Torres-Labandeira, J.J.: Improvement of water solubility of sulfamethizole through its complexation with β- and hydroxypropyl-β-cyclodextrin characterization of the interaction in solution and in solid state. Eur. J. Pharm. Sci. 13, 325–331 (2001)

    Article  CAS  Google Scholar 

  9. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  10. Strichartz, G.R., Sanchez, V., Arthur, G.R., Chafetz, R., Martin, D.: Fundamental properties of local anesthetics. 2. Measured octanol: buffer partition coefficients and pka values of clinically used Drugs. Anesth. Analg. 71, 158–170 (1990)

    Article  CAS  Google Scholar 

  11. Pinto, L.M.A., Fraceto, L.F., Santana, M.H.A., Pertinhez, T.A., Junior, S.O., De Paula, E.: Physico-chemical characterization of benzocaine-β-cyclodextrin inclusion complexes. J. Pharm. Biomed. Anal. 39, 956–963 (2005)

    Article  CAS  Google Scholar 

  12. Mic, M., Pı̂rnău, A., Bogdan, A., Turcu, I.: Inclusion complex of benzocaine and β-cyclodextrin: NMR and isothermal titration calorimetry studies. AIP Conf. Proc. 1565, 63–66 (2013). doi:10.1063/1.4833697

    Article  CAS  Google Scholar 

  13. Szejtli, J.: Cylodextrin in drug formulations: Part I. Pharm. Technol. Int. 3, 15–23 (1991)

    Google Scholar 

  14. Mehdi, D., Esrafili, V.A.: A theoretical investigation of hydrogen bonding effects on oxygen and hydrogen chemical shielding tensors of aspirin. Struct. Chem. 22, 1195–1203 (2011)

    Article  Google Scholar 

  15. Attoui Yahia, O., Khatmi, D.E.: Theoretical study of the inclusion processes of venlaxine with β-cyclodextrin. J. Mol. Struct. 912, 38–43 (2009)

    Article  CAS  Google Scholar 

  16. Yan, C.L., Xiu, Z.L., Li, X.H., Hao, C.: Molecular modeling study of β-cyclodextrin complexes with (+)-catechin and (−)- epicatechin. J. Mol. Graph. Model. 26, 420–428 (2007)

    Article  CAS  Google Scholar 

  17. Kicuntod, J., Khuntawee, W., Wolschann, P., Pongsawasdi, P., Chavasiri, W., Kungwan, N., Rungrotmongkol, T.: Inclusion complexation of pinostrobin with various cyclodextrine derivatives. J. Mol. Graph. Model. 63, 91–98 (2016)

    Article  CAS  Google Scholar 

  18. José, P., Carrasco, C., den-Haan, H., Peña-García, J., Contreras-Garcia, J., Pérez-Sánchez, H.: : Exploiting the cyclodextrins ability for antioxidants encapsulation: a computational approach to carnosol and carnosic acid embedding. Comput. Theor. Chem. 1077, 65–73 (2016)

    Article  Google Scholar 

  19. Parr, R.G., Wang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford (1989)

    Google Scholar 

  20. Debnath, T., Saha, J.K., Banu, T., Ash, T., Das, A.K.: Structural and thermodynamic aspects of Lin@Cx endohedral metallofullerenes: a DFT approach. Theor. Chem. Acc. 135, 1–19 (2016)

    Article  Google Scholar 

  21. Siva, S., Nayaki, S.K., Rajendiran, N.: Spectral and molecular modeling investigations of supramolecular complexes of mefenamic acid and aceclofenac with α- and β-cyclodextrin. J. Mol. Struct. 1067, 252–260 (2014)

    Article  Google Scholar 

  22. Hadjar, S., Khatmi, D.E.: Electronic Structure and H-Bond Interactions in β-cyclodextrin/piroxicam complex: J. Comput. Theor. Nanosci. 9, 2101–2106 (2012)

  23. ChemBio3D Ultra (version 13.0, Cambridge software)

  24. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A38, 3098–3100 (1988)

    Article  Google Scholar 

  25. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  26. Ditchfield, R., Hehre, W.J., Pople, J.A.: Self-consistent molecular-orbital methods. IX. An extended Gaussian-Type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971)

    Article  CAS  Google Scholar 

  27. Liu, L., Guo, Q.X.: Use of quantum chemical methods to study cyclodextrin chemistry. J. Incl. Phenom. Macrocycl. Chem. 50, 95–103 (2004)

    Article  CAS  Google Scholar 

  28. Stewart, J.J.P.: Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13, 1173–1213 (2007)

    Article  CAS  Google Scholar 

  29. Marcano, E., Squitieri, E., Murgich, J., Soscún, H.: Conformational dependence of the second hyperpolarizability of quadrupolar molecules. J. Mol. Struct. 911, 81–87 (2009)

    Article  CAS  Google Scholar 

  30. Thiel, W., Voityuk, A.A.: Extention of MNDO formalism to d orbitals: parameters and results for the second-row elements and for the zinc group. J. Phys. Chem. 100, 616–626 (1996)

    Article  CAS  Google Scholar 

  31. Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004)

    Article  CAS  Google Scholar 

  32. Zhao, Y., Schultz, N.E., Truhlar, D.G.: Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2, 364–382 (2006)

    Article  Google Scholar 

  33. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008)

    Article  CAS  Google Scholar 

  34. Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1990)

    Google Scholar 

  35. Matta, C.F., Boyd, R.J.: The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design. Wiley, Weinheim (2007)

    Book  Google Scholar 

  36. Biegler-Koning, F., Schonbohm, J., Bayles, D.: A program to analyze and visualize atoms in molecules. J. Comput. Chem. 22, 545–559 (2001)

    Article  Google Scholar 

  37. Reed, A.E., Curtiss, L.A., Weinhold, F.: Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988)

    Article  CAS  Google Scholar 

  38. Weinhold, F., Klein, F.: R.A.: What is a hydrogen bond? Resonance covalency in the supramolecular domain. Chem. Educ. Res. Pract. 15, 276–285 (2014)

    Article  CAS  Google Scholar 

  39. Barfiled, M., Fagerness, P.: Density Functional Theory/GIAO Studies of the 13C, 15N and 1H NMR chemical shifts in aminopyrimidines and aminobenzenes: relationships to electron densities and amine group orientations. J. Am. Chem. Soc. 119, 8699–8711 (1977)

    Article  Google Scholar 

  40. Frisch, M.J., et al.: Gaussian 09. Gaussian, Inc., Pittsburgh (2009)

    Google Scholar 

  41. Dennington, R., Keith, T., Millam, J.: Semichem Inc., Shawnee Mission KS, GaussView, Version 5 (2009)

  42. Lachi, N., Khatmi, D.E., Djemil, R.: Theoretical study of the inclusion processes of octopamine with β-cyclodextrin: PM6, ONIOM, and NBO analysis. Comptes Rend. Chim. 17, 1169–1175 (2014)

    Article  Google Scholar 

  43. Paczkowska, M., Mizera, M., Powałowska, D.S., Lewandowska, K., Błaszczak, W., Gościańska, J., Pietrzak, R., Cielecka-Piontek, J.: β-Cyclodextrin complexation as an effective drug delivery system for meropenem. Eur. J. Pharm. Biopharm. 99, 24–34 (2016)

    Article  CAS  Google Scholar 

  44. Suliman, F.E.O., Elbashir, A.A.: Enantiodifferentiation of chiral baclofen by β-cyclodextrin using capillary electrophoresis: a molecular modeling approach. J. Mol. Struct. 1019, 43–49 (2012)

    Article  CAS  Google Scholar 

  45. Rajendiran, N., Jenita, M.J.: Encapsulation of 4-hydroxy-3-methoxy benzoic acid and 4-hydroxy-3,5-dimethoxy benzoic acid with native and modified cyclodextrins. Spectrochim. Acta Mol. Biomol. Spectrosc. A 136, 1349–1357 (2015)

    Article  CAS  Google Scholar 

  46. Hohenstein, E.G., Chill, S.T., Sherrill, C.D.: Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules. J. Chem. Theory Comput. 4, 1996–2000 (2008)

    Article  CAS  Google Scholar 

  47. Car, Z., Kodrin, I., Pozar, J., Ribi, R., Kovacevi, D., Petrovi, V.: Experimental and computational study of the complexation of adamantyl glycosides with β-cyclodextrin. Tetrahedron 69, 8051–8063 (2013)

    Article  CAS  Google Scholar 

  48. Kumar, P.S.V., Vendra, V.R., Subramanian, V.: Bader’s theory of atoms in molecules (AIM) and its Applications to chemical bonding. J. Chem. Sci. 10, 1527–1536 (2016)

    Article  Google Scholar 

  49. Rozas, I., Alkorta, I., Elguero, J.: The behaviour of ylides containing N, O, and C atoms, as hydrogen bond acceptors. J. Am. Chem. Soc. 122, 11154–11161 (2000)

    Article  CAS  Google Scholar 

  50. Espinosa, E., Molins, E., Lecomte, C.: Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 285, 170–173 (1998)

    Article  CAS  Google Scholar 

  51. Weinhold, F., Landis, C.R., Glendening, E.D.: What is NBO Analysis and How is it Useful? Int. Rev. Phys. Chem. 35, 399–440 (2016)

    Article  CAS  Google Scholar 

  52. Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the General Direction of Scientific Research and Technological Development (DGRSDT) and the National Research Fund (FNR) for funding this work, through project PNR (8/u23/830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassina Attoui Yahia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attoui Yahia, H., Attoui Yahia, O., Khatmi, D. et al. Quantum chemical investigations on hydrogen bonding interactions established in the inclusion complex β-cyclodextrin/benzocaine through the DFT, AIM and NBO approaches. J Incl Phenom Macrocycl Chem 89, 353–365 (2017). https://doi.org/10.1007/s10847-017-0753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0753-1

Keywords

Navigation