Skip to main content
Log in

Use of Quantum Chemical Methods to Study Cyclodextrin Chemistry

  • Original Article
  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

Studies of cyclodextrin chemistry by quantum chemical methods are briefly surveyed. Emphases are put on what types of quantum chemical methods can be used for cyclodextrin chemistry, how to use quantum chemical methods to find the global minimum, to study the structures, binding energies, driving forces for cyclodextrin complexes, as well as chemical reactions occurring inside cyclodextrin cavities. Problems associated with the application of quantum chemical methods in cyclodextrin chemistry are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Saenger J. Jacob K. Gessler T. Steiner S. Daniel H. Sanbe K. Koizumi S.M. Smith T. Takaha (1998) ArticleTitleChem. Rev. 98 1787

    Google Scholar 

  2. H. Ueda (2002) ArticleTitleJ. Incl. Phenom. Macrocycl. Chem. 44 53

    Google Scholar 

  3. K.A. Connors (1997) ArticleTitleChem. Rev. 97 1325

    Google Scholar 

  4. K. Uekama (2002) ArticleTitleJ. Incl. Phenom. Macrocycl. Chem. 44 3

    Google Scholar 

  5. K. Takahashi (1998) ArticleTitleChem. Rev. 98 2013

    Google Scholar 

  6. K. Kano H. Hasegawa (2001) ArticleTitleJ. Incl. Phenom. Macrocycl. Chem. 41 41

    Google Scholar 

  7. (a) H.J. Buschmann, D. Knittel, and E. Schollmeyer: J. Incl. Phenom. Macrocycl. Chem. 40, 169 (2001); (b) S. Monti and S. Sortino: Chem. Soc. Rev. 31, 287 (2002); (c) A. Harada: Acc. Chem. Res. 34, 456 (2001).

  8. (a) R. Breslow and S.D. Dong: Chem. Rev. 98, 1829 (1998); (b) F. Cao, Y. Ren, W.-Y. Hua, K.-F. Ma, and Y.-L. Guo: Chin. J. Org. Chem. 22, 827 (2002).

  9. (a) W. Saenger: Angew. Chem. Int. Ed. Engl. 19, 344 (1980); (b) G. Wenz: Angew. Chem. Int. Ed. Engl. 33, 803 (1994); (c) Y. Liu and C.-C. You: Chin. J. Chem. 19, 533 (2001).

  10. K.B. Lipkowitz (1998) ArticleTitleChem. Rev. 98 1829

    Google Scholar 

  11. Recent examples: (a) P. Bonnet, C. Jaime, and L. Morin-Allory: J.’Org. Chem. 66, 689 (2001); (b) D.J. Barbiric, R.H. de Rossi, and E.A. Castro: Theochem 537, 235 (2001); (c) M. Oana, A. Tintaru, D. Gavriliu, O. Maior, and M. Hillebrand: J. Phys. Chem. B 106, 257 (2002); (d) I. Pastor, A. Di Marino, and F. Mendicuti: J. Phys. Chem. B 106, 1995 (2002); (e) L. Cunha-Silva and J.J.C. Teixeira-Dias: J. Incl. Phenom. Macrocycl. Chem. 43, 127 (2002).

    Google Scholar 

  12. Recently examples: (a) M.-Y. Nie, L.-M. Zhou, Q.-H. Wang, and D.-Q. Zhu: Acta Chim. Sin. 59, 268 (2001); (b) J. Varady, X. Wu, and S. Wang: J. Phys. Chem. B 106, 4863 (2002); (c) P. Bonnet, C. Jaime, and L. Morin-Allory: J. Org. Chem. 67, 8602 (2002); (d) I. Bea, C. Jaime, and P. Kollman: Theor. Chem. Acc. 108, 286 (2002); (e) L. Lawtrakul, H. Viernstein, and P. Wolschann: Int. J. Pharm. 256, 33 (2003); (f) K.-L. Yin, D.-J. Xu, and C.-L. Chen, Acta Phys. – Chim. Sin. 19, 480 (2003); (g) A. Mele, G. Raffaini, F. Ganazzoli, and A. Selva: J. Incl. Phenom. Macrocycl. Chem. 44, 219 (2002).

  13. J.A. Pople G.A. Segal (1966) ArticleTitleJ. Chem. Phys. 44 3289

    Google Scholar 

  14. (a) M. Kitagawa, H. Hoshi, M. Sakurai, Y. Inoue, and R. Chujo: Carbohydr. Res. 163, C1 (1987); (b) M. Sakurai, M. Kitagawa, H. Hoshi, Y. Inoue, and R. Chujo: Chem. Lett. 895 (1988); (c) M. Kitagawa, H. Hoshi, M. Sakurai, Y. Inoue, and R. Chujo: Bull. Chem. Soc. Jpn. 61, 4225 (1988).

  15. (a) M. Sakurai, M. Kitagawa, H. Hoshi, Y. Inoue, and R. Chujo: Carbohydr. Res. 198, 181 (1990); (b) M. Sakurai, M. Kitagawa, H. Hoshi, Y. Inoue, and R. Chujo: Bull. Chem. Soc. Jpn. 62, 2067 (1989).

  16. M.J.S. Dewar W. Thiel (1977) ArticleTitleJ. Am. Chem. Soc. 99 4899

    Google Scholar 

  17. M.J.S. Dewar E.G. Zoebisch E.F. Healy J.J.P. Stewart (1985) ArticleTitleJ. Am. Chem. Soc. 107 3902

    Google Scholar 

  18. J.J.P. Stewart (1989) ArticleTitleJ. Comput. Chem. 10 209

    Google Scholar 

  19. N.T. Anh G. Frisson A. Solladie-Cavallo P. Metzner (1998) ArticleTitle. Tetrahedron 54 12841

    Google Scholar 

  20. First reports of using AM1 to study CDs: (a) V.B. Luzhkov and C.A. Venanzi: J. Phys. Chem. 99, 2312 (1995); (b) N.S. Bodor, M.-J. Huang, and J.D. Watts: J. Pharm. Sci. 84, 330 (1995).

    Google Scholar 

  21. First report of using PM3 to study CDs: C. Margheritis and C. Sinistri: Z. Naturforschung A 51, 950 (1996).

    Google Scholar 

  22. (a) V.G. Avakyan, V.B. Nazarov, M.V. Alfimov, and A.A. Bagatur’yants: Russ. Chem. Bull. 48, 1833 (1999); (b) V.G. Avakyan, V.B. Nazarov, M.V. Alfimov, A.A. Bagatur’yants, and N.I. Voronezheva: Russ. Chem. Bull. 50, 206 (2001).

  23. X.-S. Li L. Liu T.-W. Mu Q.-X. Guo (2000) ArticleTitleMonatsh. Chem. 131 849

    Google Scholar 

  24. L Liu X.S. Li Q.X. Guo Y.C. Liu (1999) ArticleTitleChin. Chem. Lett. 10 1053

    Google Scholar 

  25. A. Botsi K. Yannakopoulou E. Hadjoudis J. Waite (1996) ArticleTitleCarbohydr. Res. 283 1

    Google Scholar 

  26. N. Bodor M.-J. Huang J.D. Watts (1996) ArticleTitleJ. Incl. Phenom. Macrocycl. Chem. 25 97

    Google Scholar 

  27. L.A. Godinez B.G. Schulze-Fiehn S. Patel C.M. Criss J.D. Evanseck A.E. Kaifer (1996) ArticleTitleSupramol. Chem. 8 17

    Google Scholar 

  28. M.-J. Huang J.D. Watts N. Bodor (1997) ArticleTitleInt. J. Quantum. Chem. 64 711

    Google Scholar 

  29. M.-J. Huang J.D. Watts N. Bodor (1997) ArticleTitleInt. J. Quantum. Chem. 65 1135

    Google Scholar 

  30. M. Maafi J.J. Aaron C. Lion (1998) ArticleTitleJ. Incl. Phenom. Macrocycl. Chem. 30 227

    Google Scholar 

  31. X.-S. Li U.L. L.i. Q.-X. Guo S.-D. Chu Y.-C. Liu (1999) ArticleTitleChem. Phys. Lett. 307 117

    Google Scholar 

  32. L. Liu X.-S. Li K.-S. Song Q.-X. Guo (2000) ArticleTitleTheochem. 531 127

    Google Scholar 

  33. E. Estrada I. Perdomo-Lopez J.J. Torres-Labandeira (2000) ArticleTitleJ. Org. Chem. 65 8510

    Google Scholar 

  34. N.B. Boukamel A. Krallafa D. Bormann L. Caron M. Canipelle S. Tilloy E. Monflier (2002) ArticleTitleJ. Incl. Phenom. Macrocycl. Chem. 42 269

    Google Scholar 

  35. J.W. Minns A. Khan (2002) ArticleTitle. J. Phys. Chem. A 106 6421

    Google Scholar 

  36. N. Bodor P. Buchwald (2002) ArticleTitleJ. Incl. Phenom. Macrocycl. Chem. 44 9

    Google Scholar 

  37. Y. Fu L. Liu Q.-X. Guo (2002) ArticleTitleJ. Incl. Phenom. Macrocycl. Chem. 43 223

    Google Scholar 

  38. H.F. Dos Santos H.A. Duarte R.D. Sinisterra S.V. DeMelo Mattos L.F.C. Oliveira ParticleDe W.B. Almeida ParticleDe (2000) ArticleTitleChem. Phys. Lett. 319 569

    Google Scholar 

  39. L. Liu X.-S. Li Q.-X. Guo (2000) ArticleTitleTheochem. 530 31

    Google Scholar 

  40. M. Shibakami A. Sekiya (1992) ArticleTitleJ. Chem. Soc., Chem. Commun. 1742

    Google Scholar 

  41. J.L. Alderfer A.V. Eliseev (1997) ArticleTitleJ. Org. Chem. 62 8225

    Google Scholar 

  42. (a) M. Barra, C. Bohne, and J.C. Scaiano: J. Am. Chem. Soc. 112, 8075 (1990); (b) Y. Liao, J. Frank, J.F. Holzwarth, and C. Bohne: J. Chem. Soc., Chem. Commun. 199, (1995); (c) Y. Liao, J. Frank, J.F. Holzwarth, and C. Bohne: J. Chem. Soc., Chem. Commun. 2435, (1995); (d) R.S. Murphy, T.C. Barros, J. Barnes, B. Mayer, G. Marconi, and C. Bohne: J. Phys. Chem. A 103, 137 (1999); (e) M. Christoff, L.T. Okano, and C. Bohne: J. Photochem. Photobiol. A 134, 169 (2000).

  43. K.-S. Song C.-R. Hou L. Liu X.-S. Li Q.-X. Guo (2001) ArticleTitleJ. Photochem. Photobiol. A 139 105

    Google Scholar 

  44. Recent examples: (a) Y. Sueishi, M. Kasahara, and Y. Kotake: Chem. Lett. 792 (2000); (b) D. Takamori, T. Aoki, H. Yashiro, and H. Murai: J. Phys. Chem. A 105, 6001 (2001); (c) Y.-M. Zhang, T.-B. Wei, and X.-X. Peng: Acta Phys. – Chim. Sin. 19, 975 (2003); (d) P. Franchi, M. Lucarini and G.F. Pedulli: Angew. Chem. Int. Ed. 42, 1842 (2003).

  45. (a) W.-G. Li, X.-Q. Ruan, and Q.-X. Guo: Chin. Chem. Lett. 9, 1051 (1998); (b) H.-M. Zhang, X.-Q. Ruan, Q.-X. Guo, and Y.-C. Liu: Chem. Lett. 449 (1998); (c) X.-Q. Zheng, X.-Q. Ruan, W.Wang, H.-M. Zhang, Q.-X. Guo, and Y.-C. Liu: Bull. Chem. Soc. Jpn. 72, 253 (1999); (d) X.-J. Dang, M.-Y. Nie, J. Tong, and H.-L. Li: J. Electroanal. Chem. 437, 53 (1997).

  46. L. Liu X.-S. Li T.-W. Mu Q.-X. Guo Y.-C. Liu (2000) ArticleTitle. J. Incl. Phenom. Macrocycl. Chem. 38 199

    Google Scholar 

  47. T.-W. Mu L. Liu X.-S. Li Q.-X. Guo (2001) ArticleTitleJ. Phys. Org. Chem. 14 559

    Google Scholar 

  48. L. Liu K.-S. Song X.-S. Li Q.-X. Guo (2001) ArticleTitleJ. Incl. Phenom. Macrocycl. Chem. 40 35

    Google Scholar 

  49. L. Liu Q.-X. Guo (2002) ArticleTitleJ. Incl. Phenom. Macrocycl. Chem. 42 1

    Google Scholar 

  50. K. Zborowski G. Zuchowski (2002) ArticleTitleChirality 14 632

    Google Scholar 

  51. V.B. Luzhkov G.A. Venanzi (1995) ArticleTitleJ. Phys. Chem. 99 2312

    Google Scholar 

  52. M. Eto S. Kubota H. Nakagawa Y. Yoshitake K. Harano (2000) ArticleTitleChem. Pharm. Bull. 48 1652

    Google Scholar 

  53. A.M. Granados R.H. Rossi Particlede D.A. Barbiric E.A. Castro (2002) ArticleTitleTheochem. 619 91

    Google Scholar 

  54. (a) J. Tomasi and M. Persico: Chem. Rev. 94, 2027 (1994); (b) C.J. Cramer and D.G. Truhlar: Rev. Comput. Chem. 6, 1 (1995); (c) C.J. Cramer and D.G. Truhlar: Chem. Rev. 99, 2161 (1999).

  55. (a) R. Car and M. Parrinello: Phys. Rev. Lett. 55, 2471 (1985); (b) M.E. Tuckerman: J. Phys. Condens. Matter 14, R1297 (2002).

  56. (a) M.J. Field, P.A. Bash, and M. Karplus: J. Comput. Chem. 11, 700 (1990); (b) J. Aqvist and A. Warshel: Chem. Rev. 93, 2523 (1993); (c) Y.-R. Mo, C. Alhambra, and J.-L. Gao: Acta Chim. Sin. 12, 1504 (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Xiang Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Guo, QX. Use of Quantum Chemical Methods to Study Cyclodextrin Chemistry. J Incl Phenom Macrocycl Chem 50, 95–103 (2004). https://doi.org/10.1007/s10847-003-8847-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-003-8847-3

Keywords

Navigation