Skip to main content
Log in

Properties and current applications of bacterial cyclic β-glucans and their derivatives

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Cyclic β-glucans are unique constituents that are found in the periplasmic space and extracellular media of Agrobacterium, Rhizobium, Bradyrhizobium, Rhodobacter, Xanthomonas, and Ralstonia species. Based on their glycosidic linkages, they are classified into three groups composed of cyclic β-(1,2), β-(1,3)-β-(1,6), and β-(1,2)-α-(1,6) linked glucans. Their degrees of polymerization vary ranging from 10 to 40 glucose residues, and the backbone structure can be modified with non-sugar moieties. Since the macrocyclic oligosaccharides possess their own characteristics such as inherent three-dimensional structures, hydrogen bonding, and complex-forming abilities, various possible applications would be of interest in the field of green chemistry, separation science, pharmaceutical, and food industries. In this review, we have addressed the properties and current applications of bio-sourced cyclic β-glucans and their derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fitzpatrick, D.W., Ulrich, H.J.: Macrocyclic Chemistry: New Research Developments. Nova Science Publishers, New York (2010)

    Google Scholar 

  2. Roxin, Á., Zheng, G.: Flexible or fixed: a comparative review of linear and cyclic cancer-targeting peptides. Future Med. Chem. 4(12), 1601–1618 (2012)

    Article  CAS  Google Scholar 

  3. Sansone, F., Baldini, L., Casnati, A., Ungaro, R.: Calixarenes: from biomimetic receptors to multivalent ligands for biomolecular recognition. New J. Chem. 34(12), 2715–2728 (2010)

    Article  CAS  Google Scholar 

  4. Gokel, G.W.: Crown Ethers and Cryptands, vol. 3. Royal Society of Chemistry, London (1991)

    Google Scholar 

  5. Isaacs, L.: Cucurbit [n] urils: from mechanism to structure and function. Chem. Commun. 6, 619–629 (2009)

    Article  Google Scholar 

  6. Diederich, F.: Complexation of neutral molecules by cyclophane hosts. Angew. Chem. Int. Ed. 27(3), 362–386 (1988)

    Article  Google Scholar 

  7. Jolliffe, K.A.: Backbone-modified cyclic peptides: new scaffolds for supramolecular chemistry. Supramol. Chem. 17(1–2), 81–86 (2005)

    Article  CAS  Google Scholar 

  8. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98(5), 1743–1754 (1998)

    Article  CAS  Google Scholar 

  9. Agrigento, P., Albericio, F., Chamoin, S., Dacquignies, I., Koc, H., Eberle, M.: Facile and mild synthesis of linear and cyclic peptides via thioesters. Org. Lett. 16(15), 3922–3925 (2014)

    Article  CAS  Google Scholar 

  10. Kawakami, T., Ohta, A., Ohuchi, M., Ashigai, H., Murakami, H., Suga, H.: Diverse backbone-cyclized peptides via codon reprogramming. Nat. Chem. Biol. 5(12), 888–890 (2009)

    Article  CAS  Google Scholar 

  11. Di Fabio, G., Randazzo, A., D’Onofrio, J., Ausín, C., Pedroso, E., Grandas, A., De Napoli, L., Montesarchio, D.: Cyclic phosphate-linked oligosaccharides: synthesis and conformational behavior of novel cyclic oligosaccharide analogues. J. Org. Chem. 71(9), 3395–3408 (2006)

    Article  CAS  Google Scholar 

  12. Bodine, K.D., Gin, D.Y., Gin, M.S.: Synthesis of readily modifiable cyclodextrin analogues via cyclodimerization of an alkynyl-azido trisaccharide. J. Am. Chem. Soc. 126(6), 1638–1639 (2004)

    Article  CAS  Google Scholar 

  13. Muthana, S., Yu, H., Cao, H., Cheng, J., Chen, X.: Chemoenzymatic synthesis of a new class of macrocyclic oligosaccharides. J. Org. Chem. 74(8), 2928–2936 (2009)

    Article  CAS  Google Scholar 

  14. Ariga, K., Kunitake, T.: Molecular recognition at air–water and related interfaces: complementary hydrogen bonding and multisite interaction. Acc. Chem. Res. 31(6), 371–378 (1998)

    Article  CAS  Google Scholar 

  15. Dashnau, J.L., Sharp, K.A., Vanderkooi, J.M.: Carbohydrate intramolecular hydrogen bonding cooperativity and its effect on water structure. J. Phys. Chem. B 109(50), 24152–24159 (2005)

    Article  CAS  Google Scholar 

  16. da Natividade Schöffer, J., Klein, M.P., Rodrigues, R.C., Hertz, P.F.: Continuous production of β-cyclodextrin from starch by highly stable cyclodextrin glycosyltransferase immobilized on chitosan. Carbohydr. Polym. 98(2), 1311–1316 (2013)

    Article  CAS  Google Scholar 

  17. Saenger, W.: Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. 19(5), 344–362 (1980)

    Article  Google Scholar 

  18. Easton, C., Lincoln, S.: Modified Cyclodextrins: Scaffolds and Templates for Supramolecular Chemistry. Imperial College Press, London (1999)

    Book  Google Scholar 

  19. McIntire, F.C., Peterson, W., Riker, A.: A polysaccharide produced by the crown-gall organism. J. Biol. Chem. 143(2), 491–496 (1942)

    CAS  Google Scholar 

  20. Okada, Y., Horiyama, S., Koizumi, K.: Studies on inclusion complexes of non-steroidal anti-inflammatory agents with cyclosophoraose-A. Yakugaku Zasshi. J. Pharm. Soc. Jpn. 106(3), 240–247 (1986)

    CAS  Google Scholar 

  21. Breedveld, M.W., Miller, K.J.: Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol. Rev. 58(2), 145–161 (1994)

    CAS  Google Scholar 

  22. Koizumi, K., Okada, Y., Horiyama, S., Utamura, T., Higashiura, T., Ikeda, M.: Preparation of cyclosophoraose-A and its complex-forming ability. In: Atwood, J.L., Davies, J.E.D., Osa, T. (eds.) Clathrate Compounds, Molecular Inclusion Phenomena, and Cyclodextrins, pp. 891–899. D. Reidel Publishing Company, Holland (1984)

    Chapter  Google Scholar 

  23. Lee, S., Seo, D.-H., Kim, H.-W., Jung, S.: Investigation of inclusion complexation of paclitaxel by cyclohenicosakis-(1 → 2)-(β-d-glucopyranosyl), by cyclic-(1 → 2)-β-d-glucans (cyclosophoraoses), and by cyclomaltoheptaoses (β-cyclodextrins). Carbohydr. Res. 334(2), 119–126 (2001)

    Article  CAS  Google Scholar 

  24. Morris, V.: Biotechnically produced carbohydrates with functional properties for use in food systems. Food Biotechnol. 4(1), 45–57 (1990)

    Article  CAS  Google Scholar 

  25. Morris, V.: Bacterial Polysaccharides, p. 341. Food Science and Technology, Marcel Dekker, New York (1995)

    Google Scholar 

  26. Kwon, C., Choi, Y.-H., Kim, N., Yoo, J.S., Yang, C.-H., Kim, H.-W., Jung, S.: Complex forming ability of a family of isolated cyclosophoraoses with ergosterol and its Monte Carlo docking computational analysis. J. Incl. Phenom. Macrocycl. Chem. 36(1), 55–64 (2000)

    Article  CAS  Google Scholar 

  27. Kwon, C., Choi, J., Lee, S., Park, H., Jung, S.: Chiral separation and discrimination of catechin by microbial cyclic beta-(1 → 3), (1 → 6)-glucans Isolated from Bradyrhizobium japonicum. Bull. Korean Chem. Soc. 28(2), 347 (2007)

    Article  CAS  Google Scholar 

  28. Kwon, C., Jung, S.: Stereoisomeric separation of some flavanones using highly succinate-substituted α-cyclosophoro-octadecaoses as chiral additives in capillary electrophoresis. Carbohydr. Res. 346(1), 133–139 (2011)

    Article  CAS  Google Scholar 

  29. Kim, H., Choi, J.M., Choi, Y., Tahir, M.N., Yang, Y.-H., Cho, E., Jung, S.: Enhanced solubility of galangin based on the complexation with methylated microbial cyclosophoraoses. J. Incl. Phenom. Macrocycl. Chem. 79(3–4), 291–300 (2014)

    Article  CAS  Google Scholar 

  30. Choi, J.M., Jeong, D., Piao, J., Kim, K., Nguyen, A.B.L., Kwon, N.-J., Lee, M.-K., Yu, J.-H., Jung, S.: Hydroxypropyl cyclic β-(1 → 2)-d-glucans and epichlorohydrin β-cyclodextrin dimers as effective carbohydrate-solubilizers for polycyclic aromatic hydrocarbons. Carbohydr. Res. 401, 82–88 (2015)

    Article  CAS  Google Scholar 

  31. Kwon, C., Park, H., Jung, S.: Enantioseparation of some chiral flavanones using microbial cyclic β-(1 → 3), (1 → 6)-glucans as novel chiral additives in capillary electrophoresis. Carbohydr. Res. 342(5), 762–766 (2007)

    Article  CAS  Google Scholar 

  32. Tobey, S.L., Anslyn, E.V.: Studies into the thermodynamic origin of negative cooperativity in ion-pairing molecular recognition. J. Am. Chem. Soc. 125(36), 10963–10970 (2003)

    Article  CAS  Google Scholar 

  33. Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3(12), 1023–1035 (2004)

    Article  CAS  Google Scholar 

  34. Izawa, H., Kawakami, K., Sumita, M., Tateyama, Y., Hill, J.P., Ariga, K.: β-Cyclodextrin-crosslinked alginate gel for patient-controlled drug delivery systems: regulation of host–guest interactions with mechanical stimuli. J. Mater. Chem. B 1(16), 2155–2161 (2013)

    Article  CAS  Google Scholar 

  35. Abbaspour, A., Noori, A.: A cyclodextrin host–guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens. Bioelectron. 26(12), 4674–4680 (2011)

    Article  CAS  Google Scholar 

  36. Rusa, C.C., Tonelli, A.E.: Separation of polymers by molecular weight through inclusion compound formation with urea and α-cyclodextrin hosts. Macromolecules 33(5), 1813–1818 (2000)

    Article  CAS  Google Scholar 

  37. Putman, E., Potter, A., Hodgson, R., Hassid, W.: The structure of crown-gall polysaccharide. J. Am. Chem. Soc. 72(11), 5024–5026 (1950)

    Article  CAS  Google Scholar 

  38. Zevenhuizen, L., Scholten-Koerselman, H.: Surface carbohydrates of Rhizobium I. β-1, 2-Glucans. Antonie Van Leeuwenhoek 45(2), 165–175 (1979)

    Article  CAS  Google Scholar 

  39. York, W.S., McNEIL, M., Darvill, A.G., Albersheim, P.: Beta-2-linked glucans secreted by fast-growing species of Rhizobium. J. Bacteriol. 142(1), 243–248 (1980)

    CAS  Google Scholar 

  40. Dell, A., York, W.S., McNeil, M., Darvill, A.G., Albersheim, P.: The cyclic structure of β-d-(1 → 2)-linked d-glucans secreted by Rhizobia and Agrobacteria. Carbohydr. Res. 117, 185–200 (1983)

    Article  CAS  Google Scholar 

  41. Hisamatsu, M., Amemura, A., Koizumi, K., Utamura, T., Okada, Y.: Structural studies on cyclic (1 → 2)-β-d-glucans (cyclosophoraoses) produced by Agrobacterium and Rhizobium. Carbohydr. Res. 121, 31–40 (1983)

    Article  CAS  Google Scholar 

  42. Koizumi, K., Okada, Y., Horiyama, S., Utamura, T., Hisamatsu, M., Amemura, A.: Separation of cyclic (1 → 2)-β-d-glucans (cyclosophoraoses) produced by agrobacterium and rhizobium, and determination of their degree of polymerization by high-performance liquid chromatography. J. Chromatogr. A 265, 89–96 (1983)

    Article  CAS  Google Scholar 

  43. Koizumi, K., Okada, Y., Utamura, T., Hisamatsu, M., Amenura, A.: Further studies on the separation of cyclic (1 → 2)-β-d-glucans (cyclosophoraoses) produced by Rhizobium meliloti ifo 13336, and determination of their degrees of polymerization by high-performance liquid chromatography. J. Chromatogr. A 299, 215–224 (1984)

    Article  CAS  Google Scholar 

  44. Palleschi, A., Crescenzi, V.: On the possible conformation of cyclic beta-(1 → 2)-d-glucans. In: Venkatachalam, G., Gummadi, S., Doble, M. (eds.) Cyclic β-Glucans from Microorganisms: Production, Properties and Applications, pp. 243–245. Springer, Heidelberg (1985)

    Google Scholar 

  45. Abe, M., Amemura, A., Higashi, S.: Studies on cyclic β-1, 2-glucan obtained from periplasmic space ofRhizobium trifolii cells. Plant Soil 64(3), 315–324 (1982)

    Article  CAS  Google Scholar 

  46. Peters, N.K., Frost, J.W., Long, S.R.: A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233(4767), 977–980 (1986)

    Article  CAS  Google Scholar 

  47. Morris, V., Brownsey, G., Chilvers, G., Harris, J., Gunning, A., Stevens, B.: Possible biological roles for Rhizobium leguminosarum extracellular polysaccharide and cyclic glucans in bacteria-plant interactions for nitrogen-fixing bacteria. Food Hydrocolloids 5(1), 185–188 (1991)

    Article  CAS  Google Scholar 

  48. Lee, S., Seo, D.-H., Park, H.-L., Choi, Y., Jung, S.: Solubility enhancement of a hydrophobic flavonoid, luteolin by the complexation with cyclosophoraoses isolated from Rhizobium meliloti. Antonie Van Leeuwenhoek 84(3), 201–207 (2003)

    Article  CAS  Google Scholar 

  49. Choma, A., Komaniecka, I.: Characterisation of Mesorhizobium huakuii cyclic b-glucan. Acta Biochim. Pol. 50, 1273–1281 (2003)

    CAS  Google Scholar 

  50. Kawaharada, Y., Kiyota, H., Eda, S., Minamisawa, K., Mitsui, H.: Structural characterization of neutral and anionic glucans from Mesorhizobium loti. Carbohydr. Res. 343(14), 2422–2427 (2008)

    Article  CAS  Google Scholar 

  51. Bundle, D., Cherwonogrodzky, J., Perry, M.: Characterization of Brucella polysaccharide B. Infect. Immun. 56(5), 1101–1106 (1988)

    CAS  Google Scholar 

  52. Ielpi, L., Dylan, T., Ditta, G.S., Helinski, D.R., Stanfield, S.W.: The ndvB locus of Rhizobium meliloti encodes a 319-kDa protein involved in the production of beta-(1–2)-glucan. J. Biol. Chem. 265(5), 2843–2851 (1990)

    CAS  Google Scholar 

  53. Stanfield, S., Ielpi, L., O’brochta, D., Helinski, D., Ditta, D.: The ndvA gene product of Rhizobium meliloti is required for beta-(1–2) glucan production and has homology to the ATP-binding export protein HlyB. J. Bacteriol. 170(8), 3523–3530 (1988)

    CAS  Google Scholar 

  54. Zorreguieta, A., Geremia, R.A., Cavaignac, S., Cangelosi, G.A., Nester, E.W., Ugalde, R.A.: Identification of the product of an Agrobacterium tumefaciens chromosomal virulence gene. Mol. Plant Microbe Interact. 1, 121–127 (1988)

    Article  CAS  Google Scholar 

  55. de Iannino, N.I., Briones, G., Tolmasky, M., Ugalde, R.A.: Molecular cloning and characterization of cgs, the brucella abortus cyclic β (1–2) glucan synthetase gene: genetic complementation of Rhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants. J. Bacteriol. 180(17), 4392–4400 (1998)

    Google Scholar 

  56. Roset, M.S., Ciocchini, A.E., Ugalde, R.A., de Iannino, N.I.: Molecular cloning and characterization of cgt, the Brucella abortus cyclic β-1, 2-glucan transporter gene, and its role in virulence. Infect. Immun. 72(4), 2263–2271 (2004)

    Article  CAS  Google Scholar 

  57. Ciocchini, A.E., Roset, M.S., de Iannino, N.I., Ugalde, R.A.: Membrane topology analysis of cyclic glucan synthase, a virulence determinant of Brucella abortus. J. Bacteriol. 186(21), 7205–7213 (2004)

    Article  CAS  Google Scholar 

  58. Ciocchini, A.E., Guidolin, L.S., Casabuono, A.C., Couto, A.S., de Iannino, N.I., Ugalde, R.A.: A glycosyltransferase with a length-controlling activity as a mechanism to regulate the size of polysaccharides. Proc. Natl. Acad. Sci. U.S.A. 104(42), 16492–16497 (2007)

    Article  CAS  Google Scholar 

  59. Amemura, A.: Synthesis of (1 → 2)-β-d-glucan by cell-free extracts of agrobacterium radiobacter IFO 12665b 1 and Rhizobium phaseoli AHU 1133. Agric. Biol. Chem. 48(7), 1809–1817 (1984)

    CAS  Google Scholar 

  60. Breedveld, M., Zevenhuizen, L., Zehnder, A.: Synthesis of cyclic beta-(1, 2)-glucans by Rhizobium leguminosarum biovar trifolii TA-1: factors influencing excretion. J. Bacteriol. 174(20), 6336–6342 (1992)

    CAS  Google Scholar 

  61. Martirosyan, A., Pérez-Gutierrez, C., Banchereau, R., Dutartre, H., Lecine, P., Dullaers, M., Mello, M., Salcedo, S.P., Muller, A., Leserman, L.: Brucella β 1, 2 cyclic glucan is an activator of human and mouse dendritic cells. PLoS Pathog. 8(11), e1002983 (2012)

    Article  CAS  Google Scholar 

  62. Breedveld, M.W., Zevenhuizen, L., Zehnder, A.: Excessive excretion of cyclic beta-(1, 2)-glucan by Rhizobium trifolii TA-1. Appl. Environ. Microbiol. 56(7), 2080–2086 (1990)

    CAS  Google Scholar 

  63. Jeon, Y., Kwon, C., Cho, E., Jung, S.: Carboxymethylated cyclosophoraose as a novel chiral additive for the stereoisomeric separation of some flavonoids by capillary electrophoresis. Carbohydr. Res. 345(16), 2408–2412 (2010)

    Article  CAS  Google Scholar 

  64. Breedveld, M.W., Zevenhuizen, L.P., Zehnder, A.J.: Osmotically-regulated trehalose accumulation and cyclic β-(1, 2)-glucan excretion by Rhizobium leguminosarum biovar trifolii TA-1. Arch. Microbiol. 156(6), 501–506 (1991)

    CAS  Google Scholar 

  65. Mimura, M., Kitamura, S., Gotoh, S., Takeo, K., Urakawa, H., Kajiwara, K.: Conformation of cyclic and linear (1 → 2)-β-d-glucans in aqueous solution. Carbohydr. Res. 289, 25–37 (1996)

    Article  CAS  Google Scholar 

  66. Choi, Y.-H., Yang, C.-H., Kim, H.-W., Jung, S.: Molecular dynamics simulations of cyclohenicosakis-[(1 → 2)-β-d-gluco-henicosapyranosyl], a cyclic (1 → 2)-β-d-glucan (a ‘cyclosophoraose’) of DP 21. Carbohydr. Res. 326(3), 227–234 (2000)

    Article  CAS  Google Scholar 

  67. Kim, H., Jeong, K., Lee, S., Jung, S.: Molecular dynamics simulation of cyclosophoroheptadecaose (Cys-A). J. Comput. Aided Mol. Des. 16(8–9), 601–610 (2002)

    Article  CAS  Google Scholar 

  68. Poppe, L., York, W.S., van Halbeek, H.: Measurement of inter-glycosidic 13C–1H coupling constants in a cyclic β (1 → 2)-glucan by 13C-filtered 2D 1H, 1H ROESY. J. Biomol. NMR 3(1), 81–89 (1993)

    Article  CAS  Google Scholar 

  69. Rees, D.A., Scott, W.: Polysaccharide conformation. Part VI. Computer model-building for linear and branched pyranoglycans. Correlations with biological function. Preliminary assessment of inter-residue forces in aqueous solution. Further interpretation of optical rotation in terms of chain conformation. J. Chem. Soc. B 469–479 (1971). doi:10.1039/J29710000469

  70. Niehaus, K., Albus, U., Baier, R., Schiene, K., Schröder, S., Pühler, A.: Symbiotic suppression of the Medicago sativa plant defence system by Rhizobium meliloti oligosaccharides. In: Elmerich, C., Kondorosi, A., Newton, W.E. (eds.) Biological Nitrogen Fixation for the 21st Century, pp. 225–226. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  71. Bohin, J.-P.: Osmoregulated periplasmic glucans in proteobacteria. FEMS Microbiol. Lett. 186(1), 11–19 (2000)

    Article  CAS  Google Scholar 

  72. Dylan, T., Helinski, D., Ditta, G.S.: Hypoosmotic adaptation in Rhizobium meliloti requires beta-(1–2)-glucan. J. Bacteriol. 172(3), 1400–1408 (1990)

    CAS  Google Scholar 

  73. Arellano-Reynoso, B., Lapaque, N., Salcedo, S., Briones, G., Ciocchini, A., Ugalde, R., Moreno, E., Moriyó, N.I., Gorvel, J.P.: Cyclic beta-1, 2-glucan is a Brucella virulence factor required for intracellular survival. Nat. Immunol. 6, 618–625 (2005)

    Article  CAS  Google Scholar 

  74. Miller, K., Gore, R., Johnson, R., Benesi, A., Reinhold, V.: Cell-associated oligosaccharides of Bradyrhizobium spp. J. Bacteriol. 172(1), 136–142 (1990)

    CAS  Google Scholar 

  75. Rolin, D.B., Pfeffer, P.E., Osman, S.F., Szwergold, B.S., Kappler, F., Benesi, A.J.: Structural studies of a phosphocholine substituted β-(1, 3);(1, 6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim. Biophys. Acta Gen. Subj. 1116(3), 215–225 (1992)

    Article  CAS  Google Scholar 

  76. Miller, K.J., Hadley, J.A., Gustine, D.L.: Cyclic [beta]-1, 6-1, 3-glucans of Bradyrhizobium japonicum USDA 110 elicit isoflavonoid production in the soybean (Glycine max) host. Plant Physiol. 104(3), 917–923 (1994)

    CAS  Google Scholar 

  77. Bhagwat, A.A., Mithöfer, A., Pfeffer, P.E., Kraus, C., Spickers, N., Hotchkiss, A., Ebel, J., Keister, D.L.: Further studies of the role of cyclic β-glucans in symbiosis. An ndvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis-(1 → 3)-β-Glucosyl. Plant Physiol. 119(3), 1057–1064 (1999)

    Article  CAS  Google Scholar 

  78. Komaniecka, I., Choma, A.: Isolation and characterization of periplasmic cyclic β-glucans of Azorhizobium caulinodans. FEMS Microbiol. Lett. 227(2), 263–269 (2003)

    Article  CAS  Google Scholar 

  79. Altabe, S., Talaga, P., Wieruszeski, J., Lippens, G., Ugalde, R., Bohin, J.: Periplasmic Glucans of Azospirillum Brasilense. Kluwer Academic, Netherlands (1998)

    Google Scholar 

  80. Talaga, P., Stahl, B., Wieruszeski, J.-M., Hillenkamp, F., Tsuyumu, S., Lippens, G., Bohin, J.-P.: Cell-associated glucans of Burkholderia solanacearum and Xanthomonas campestris pv. citri: a new family of periplasmic glucans. J. Bacteriol. 178(8), 2263–2271 (1996)

    CAS  Google Scholar 

  81. Wieruszeski, J.-M., Bohin, A., Bohin, J.-P., Lippens, G.: In vivo detection of the cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum by high-resolution magic angle spinning NMR. J. Magn. Reson. 151(1), 118–123 (2001)

    Article  CAS  Google Scholar 

  82. Lippens, G., Wieruszeski, J.-M., Talaga, P., Bohin, J.-P.: Measurement of three-bond coupling constants in the osmoregulated periplasmic glucan of Burkholderia solanacearum. J. Biomol. NMR 8(3), 311–318 (1996)

    Article  CAS  Google Scholar 

  83. York, W.S.: A conformational model for cyclic β-(1 → 2)-linked glucans based on NMR analysis of the β-glucans produced by Xanthomonas campestris. Carbohydr. Res. 278(2), 205–225 (1995)

    Article  CAS  Google Scholar 

  84. Rigano, L.A., Payette, C., Brouillard, G., Marano, M.R., Abramowicz, L., Torres, P.S., Yun, M., Castagnaro, A.P., El Oirdi, M., Dufour, V.: Bacterial cyclic β-(1, 2)-glucan acts in systemic suppression of plant immune responses. Plant cell 19(6), 2077–2089 (2007)

    Article  CAS  Google Scholar 

  85. Talaga, P., Cogez, V., Wieruszeski, J.M., Stahl, B., Lemoine, J., Lippens, G., Bohin, J.P.: Osmoregulated periplasmic glucans of the free-living photosynthetic bacterium Rhodobacter sphaeroides. Eur. J. Biochem. 269(10), 2464–2472 (2002)

    Article  CAS  Google Scholar 

  86. Kim, H., Jeong, K., Cho, K.W., Paik, S.R., Jung, S.: Molecular dynamics simulations of a cyclic-β-(1 → 2) glucan containing an α-(1 → 6) linkage as a ‘molecular alleviator’ for the macrocyclic conformational strain. Carbohydr. Res. 341(8), 1011–1019 (2006)

    Article  CAS  Google Scholar 

  87. Miller, K., Gore, R., Benesi, A.: Phosphoglycerol substituents present on the cyclic beta-1, 2-glucans of Rhizobium meliloti 1021 are derived from phosphatidylglycerol. J. Bacteriol. 170(10), 4569–4575 (1988)

    CAS  Google Scholar 

  88. Roset, M.S., Ciocchini, A.E., Ugalde, R.A., de Iannino, N.I.: The Brucella abortus cyclic β-1, 2-glucan virulence factor is substituted with O-ester-linked succinyl residues. J. Bacteriol. 188(14), 5003–5013 (2006)

    Article  CAS  Google Scholar 

  89. Wang, P., Ingram-Smith, C., Hadley, J.A., Miller, K.J.: Cloning, sequencing, and characterization of the cgmB gene of sinorhizobium meliloti involved in cyclic β-glucan biosynthesis. J. Bacteriol. 181(15), 4576–4583 (1999)

    CAS  Google Scholar 

  90. Guidolin, L.S., Seijo, S.M.M., Guaimas, F.F., Comerci, D.J., Ciocchini, A.E.: Interaction network and localization of Brucella abortus membrane proteins involved in the synthesis, transport, and succinylation of cyclic β-1, 2-glucans. J. Bacteriol. 197(9), 1640–1648 (2015)

    Article  CAS  Google Scholar 

  91. Miller, K.J., Kennedy, E.P., Reinhold, V.N.: Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231(4733), 48–51 (1986)

    Article  CAS  Google Scholar 

  92. Jung, Y., Park, H., Cho, E., Jung, S.: Structural analyses of novel glycerophosphorylated α-cyclosophorohexadecaoses isolated from X. campestris pv. campestris. Carbohydr. Res. 340(4), 673–677 (2005)

    Article  CAS  Google Scholar 

  93. Cho, E., Lee, S., Jung, S.: Novel acetylated α-cyclosophorotridecaose produced by Ralstonia solanacearum. Carbohydr. Res. 343(5), 912–918 (2008)

    Article  CAS  Google Scholar 

  94. Cogez, V., Gak, E., Puskas, A., Kaplan, S., Bohin, J.P.: The opgGIH and opgC genes of Rhodobacter sphaeroides form an operon that controls backbone synthesis and succinylation of osmoregulated periplasmic glucans. Eur. J. Biochem. 269(10), 2473–2484 (2002)

    Article  CAS  Google Scholar 

  95. Lee, S., Park, H., Seo, D., Choi, Y., Jung, S.: Synthesis and characterization of carboxymethylated cyclosophoraose, and its inclusion complexation behavior. Carbohydr. Res. 339(3), 519–527 (2004)

    Article  CAS  Google Scholar 

  96. Park, H., Choi, Y., Kang, S., Lee, S., Kwon, C., Jung, S.: pH-Dependent inclusion complexation of carboxymethylated cyclosophoraoses to N-acetylphenylalanine. Carbohydr. Polym. 64(1), 85–91 (2006)

    Article  CAS  Google Scholar 

  97. Park, H., Jung, S.: pH-dependent on-off inclusion complexation of carboxymethylated cyclosophoraoses with neutral red. Bull. Korean Chem. Soc. 26, 675–678 (2005)

    Article  CAS  Google Scholar 

  98. Park, H., Lee, S., Kang, S., Jung, Y., Jung, S.: Enantioseparation using sulfated cyclosophoraoses as a novel chiral additive in capillary electrophoresis. Electrophoresis 25(16), 2671–2674 (2004)

    Article  CAS  Google Scholar 

  99. Kwon, C., Choi, Y., Jeong, D., Kim, J.G., Choi, J.M., Chun, S., Park, S., Jung, S.: Inclusion complexation of naproxen with cyclosophoraoses and succinylated cyclosophoraoses in different pH environments. J. Incl. Phenom. Macrocycl. Chem. 74(1–4), 325–333 (2012)

    Article  CAS  Google Scholar 

  100. Kwon, C., Jung, S.: pH-dependent inclusion complexation of highly succinylated cyclosophoraoses with 4′-hydroxyflavanone. Bull. Korean Chem. Soc. 32(8), 2791–2794 (2011)

    Article  Google Scholar 

  101. Park, H., Jung, S.: Preparation of amino-cyclosophoraoses from the neutral cyclosophoraoses isolated from Rhizobium leguminosarum bv. trifolii. Bull. Korean Chem. Soc. 27(9), 1485 (2006)

    Article  CAS  Google Scholar 

  102. Cho, E., Jeong, D., Paik, S.R., Jung, S.: Rod and vesicular structures of cyclosophoraose-based ionic self-assembly. Bull. Korean Chem. Soc. 35(8), 2537 (2014)

    Article  CAS  Google Scholar 

  103. Kwon, Y., Cho, E., Lee, I.-S., Jung, S.: Synthesis and characterization of butyryl cyclosophoraose, and its inclusion complexation behavior for some flavonoids. Bull. Korean Chem. Soc. 32, 2779–2782 (2011)

    Article  Google Scholar 

  104. Piao, J., Jang, A., Choi, Y., Tahir, M.N., Kim, Y., Park, S., Cho, E., Jung, S.: Solubility enhancement of α-naphthoflavone by synthesized hydroxypropyl cyclic-(1 → 2)-β-d-glucans (cyclosophoroases). Carbohydr. Polym. 101, 733–740 (2014)

    Article  CAS  Google Scholar 

  105. Jeong, D., Choi, J.M., Choi, Y., Jeong, K., Cho, E., Jung, S.: Complexation of fisetin with novel cyclosophoroase dimer to improve solubility and bioavailability. Carbohydr. Polym. 97(1), 196–202 (2013)

    Article  CAS  Google Scholar 

  106. Jeong, D., Piao, J., Kwon, C., Jung, S.: Synthesis of oligomeric microbial cyclosophoraoses as novel complexation agents. Bull. Korean Chem. Soc. 33(6), 2095–2098 (2012)

    Article  CAS  Google Scholar 

  107. Cho, E., Kwon, C., Lee, S., Tahir, M.N., Park, S., Jung, S.: Biotinylation of the rhizobial cyclic β-glucans and succinoglycans crucial for symbiosis with legumes. Carbohydr. Res. 389, 141–146 (2014)

    Article  CAS  Google Scholar 

  108. Sung, K., Maloney, M.T., Yang, J., Wu, C.: A novel method for producing mono-biotinylated, biologically active neurotrophic factors: an essential reagent for single molecule study of axonal transport. J. Neurosci. Methods 200(2), 121–128 (2011)

    Article  CAS  Google Scholar 

  109. Lee, S., Jung, S.: 13 C NMR spectroscopic analysis on the chiral discrimination of N-acetylphenylalanine, catechin and propranolol induced by cyclic-(1 → 2)-β-d-glucans (cyclosophoraoses). Carbohydr. Res. 337(19), 1785–1789 (2002)

    Article  CAS  Google Scholar 

  110. Lee, S., Choi, Y., Lee, S., Jeong, K., Jung, S.: Chiral recognition based on enantioselective interactions of propranolol enantiomers with cyclosophoraoses isolated from Rhizobium meliloti. Chirality 16(3), 204–210 (2004)

    Article  CAS  Google Scholar 

  111. Jung, Y., Lee, S., Paik, S.R., Jung, S.: Cyclosophoraose as a novel chiral stationary phase for enantioseparation. J. Microbiol. Biotehnol. 14(6), 1338–1342 (2004)

    CAS  Google Scholar 

  112. Jeong, D., Kim, H., Dindulkar, S.D., Lee, J.Y., Jung, S.: Preparation of a novel chiral stationary phase containing rhizobial cyclic β-(1 → 2) glucans for the chiral separation of some flavonoids. Bull. Korean Chem. Soc. 36(9), 2379–2382 (2015)

    Article  CAS  Google Scholar 

  113. Lee, S., Jung, S.: Enantioseparation using cyclosophoraoses as a novel chiral additive in capillary electrophoresis. Carbohydr. Res. 338(10), 1143–1146 (2003)

    Article  CAS  Google Scholar 

  114. Cho, E., Jeon, Y., Jung, S.: Chiral separation of hesperetin and hesperetin-o-glycoside in capillary electrophoresis using microbial β-1, 2-glucans. Bull. Korean Chem. Soc. 30, 1870–1872 (2009)

    Article  CAS  Google Scholar 

  115. Kwon, C., Jeong, D., Jung, S.: Chiral separation of catechin by capillary electrophoresis with α-cyclosophorooctadecaose isolated from Rhodobacter sphaeroides as chiral selectors. Bull. Korean Chem. Soc. 32(4), 1361 (2011)

    Article  CAS  Google Scholar 

  116. Park, H., Jung, S.: Separation of some chiral flavonoids by microbial cyclosophoraoses and their sulfated derivatives in micellar electrokinetic chromatography. Electrophoresis 26(20), 3833–3838 (2005)

    Article  CAS  Google Scholar 

  117. Lee, S., Kwon, C., Choi, Y., Seo, D.-H., Kim, H.-W., Jung, S.: Inclusion complexation of a family of cyclosophoraoses with indomethacin. J. Microbiol. Biotehnol. 11(3), 463–468 (2001)

    CAS  Google Scholar 

  118. Choi, Y.-H., Yang, C.-H., Choe, T., Jung, S.: Monte Carlo simulations on the cyclosophoraose as a host for the complexation of indomethacin. Bull. Korean Chem. Soc. 21(3), 361 (2000)

    CAS  Google Scholar 

  119. Kang, S., Lee, S., Kwon, C., Jung, S.: Solubility enhancement of flavonoids by cyclosophoraose isolated from Rhizobium meliloti 2011. J. Microbiol. Biotehnol. 16(5), 791 (2006)

    CAS  Google Scholar 

  120. Lee, S., Jung, S.: Cyclosophoraose as a catalytic carbohydrate for methanolysis. Carbohydr. Res. 339(3), 461–468 (2004)

    Article  CAS  Google Scholar 

  121. Cho, E., Lee, S., Kang, S., Jung, S.: Benzoate methanolysis catalyzed by α-cyclosophorohexadecaose isolated from Xanthomonas oryzae. Carbohydr. Polym. 70(2), 174–180 (2007)

    Article  CAS  Google Scholar 

  122. Park, H., Jung, S.: Methanolysis of ethyl esters of N-acetyl amino acids catalyzed by cyclosophoraoses isolated from Rhizobium meliloti. Carbohydr. Res. 343(2), 274–281 (2008)

    Article  CAS  Google Scholar 

  123. Park, H., Kang, L.-W., Jung, S.: Methanolysis of 7-acetoxy-4-methylcoumarin catalyzed by cyclosophoraoses isolated from Rhizobium meliloti. Bull. Korean Chem. Soc. 29(1), 228 (2008)

    Article  CAS  Google Scholar 

  124. Lee, S., Cho, E., Kwon, C., Jung, S.: Cyclosophorohexadecaose and succinoglycan monomers as catalytic carbohydrates for the Strecker reaction. Carbohydr. Res. 342(17), 2682–2687 (2007)

    Article  CAS  Google Scholar 

  125. Cho, E., Lee, S., Jung, S.: Non-enzymatic self-acetylation of α-cyclosophorotridecaoses Isolated from Ralstonia solanacearum: mass spectrometric study. Bull. Korean Chem. Soc. 35(8), 2585 (2014)

    Article  CAS  Google Scholar 

  126. Dindulkar, S.D., Jeong, D., Cho, E., Kim, D., Jung, S.: Microbial cyclosophoraose as a catalyst for the synthesis of diversified indolyl 4 H-chromenes via one-pot three component reactions in water. Green Chem. 18, 3620–3627 (2016)

Download references

Acknowledgments

This paper was supported by the KU Research Professor Program of Konkuk University. This research was also supported by the National Research Foundation of Korea, funded by the Korean Government (NRF-2015R1D1A1A01058686) and the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIP (2015M3A9B8031831). SDG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunho Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, E., Jeong, D., Choi, Y. et al. Properties and current applications of bacterial cyclic β-glucans and their derivatives. J Incl Phenom Macrocycl Chem 85, 175–185 (2016). https://doi.org/10.1007/s10847-016-0630-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0630-3

Keywords

Navigation