Skip to main content
Log in

Inclusion complexation of naproxen with cyclosophoraoses and succinylated cyclosophoraoses in different pH environments

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Cyclosophoraoses [cyclic β-(1,2)-glucan, Cys] isolated from Rhizobium leguminosarum biovar trifolii TA-1 have unique structures and high solubility, which make it a potent solubilizer for host–guest inclusion complexation. Succinylated cyclosophorasoses (S-Cys) were also synthesized by chemically modifying isolated cyclosophoraoses. In ultraviolet-visible studies using naproxen (NAP), Cys was shown to form the most stable complexes with NAP (K 1:1 = 2457.9 M−1), which was followed by the negatively charged S-Cys (K 1:1 = 357.1 M−1) at pH 3.4. A further strong reduction in the complex stability constant was observed at pH 7.5. When the reduction in the stability constant was compared with other cyclic oligosaccharides (Cys; 119.2 M−1, CD; 14.48 M−1 and HP-CD; 6.75 M−1), S-Cys (K 1:1 = 5.6 M−1) was shown to have the highest decrease in stability constant. These results suggest that the S-Cys could regulate the efficiency of inclusion complexation at external pH values. NMR studies of complex formation between NAP and Cys also showed a different correlation pattern at pH 3.4 and 7.5. This difference in correlation demonstrates that the inclusion complexes between Cys and NAP formed as a result of the differential charge distribution of the carboxyl groups of NAP. The pH-dependent inclusion behavior of Cys for NAP was also evaluated using molecular docking simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Cys:

Cyclosophoraoses

S-Cys:

Succinlyated cyclsophoraoses

NAP:

Naproxen

CD:

β-Cyclodextrin

HP-CD:

Hydroxypropyl-β-cyclodextrin

MALDI-TOF:

Matrix assisted laser desorption/ionization-time of flight

NMR:

Nuclear magnetic resonance

DSC:

Differential scanning calorimetry

ROESY:

Rotating frame nuclear overhauser effect spectroscopy

DP:

Degree of polymerization

TLC:

Thin layer chromatography

DS:

Degree of substitution

Deuterium oxide:

D2O

Deuterium methanol:

CD3OD

DEAE:

Diethylaminoethyl

FID:

Free induction decay

References

  1. Abe, M., Amemura, A., Higashi, S.: Studies on cyclic beta-l,2-glucan obtained from periplasmic space of Rhizobium trifolii cells. Plant Soil 64(3), 315–324 (1982)

    Article  CAS  Google Scholar 

  2. Amemura, A., Hisamatsu, M., Mitani, H., Harada, T.: Cyclic (1 → 2)-b-d-glucan and the octasaccharide repeating-units of extracellular acidic polysaccharides produced by Rhizobium. Carbohydr. Res. 114, 277–285 (1983)

    Article  CAS  Google Scholar 

  3. Breedveld, M.W., Zevenhuizen, L.P.T.M., Zehnder, A.J.B.: Excessive excretion of cyclic beta-(1,2)-glucan by Rhizobium trifolii TA-1. Appl. Environ. Microbiol. 56(7), 2080–2086 (1990)

    CAS  Google Scholar 

  4. Andre’, L., Mazeau, K., Taravel, F.R., Tvaroska, I.: Conformation and dynamics of a cyclic (1 → 2)-beta-d-glucan. Int. J. Biol. Macromol. 17(3–4), 189–198 (1995)

    Article  Google Scholar 

  5. Spaink, H.P.: Rhizobial lipo-oligosaccharides: answers and questions. Plant Mol. Biol. 20(5), 977–986 (1992)

    Article  CAS  Google Scholar 

  6. Zorreguieta, A., Cavaignac, S., Geremia, R.A., Ugalde, R.A.: Osmotic regulation of beta(1–2) glucan synthesis in members of the family Rhizobiaceae. J. Bacteriol. 172(8), 4701–4704 (1990)

    CAS  Google Scholar 

  7. Leighand, J.L., Coplin, D.L.: Exopolysaccharides in plant-bacterial interactions. Annu. Rev. Microbiol. 46, 307–346 (1992)

    Article  Google Scholar 

  8. Miller, K.J., Kennedy, E.P., Reinhold, V.N.: Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231(4733), 48–51 (1986)

    Article  CAS  Google Scholar 

  9. Koizumi, K., Okada, Y., Horiyama, S., Utamura, T., Higashiura, T., Ikeda, M.: Preparation of cyclosophoraose-A and its complex-forming ability. J. Incl. Phenom. 2, 891–899 (1984)

    Article  CAS  Google Scholar 

  10. Okada, Y., Horiyama, S., Koizumi, K.: Studies on inclusion complexes of non-steroidal anti-inflammatory agents with cyclosophoraose-A. Yakugaku Zasshi 106, 240–247 (1986)

    CAS  Google Scholar 

  11. Kwon, C., Choi, Y., Kim, N., Yoo, J., Yang, C., Kim, H., Jung, S.: Complex forming ability of a family of isolated cyclosophoraoses with erogosterol and its Monte Carlo docking comutatational analysis. J. Incl. Phenom. 36, 55–65 (2000)

    Article  CAS  Google Scholar 

  12. Lee, S., Kwon, C., Choi, Y., Seo, D., Kim, H., Jung, S.: Inclusion complexation of a family of cyclosophoraoses with indomethacin. J. Microbiol. Biotechnol. 11(3), 463–468 (2001)

    CAS  Google Scholar 

  13. Lee, S., Seo, D., Kim, H., Jung, S.: Investigation of inclusion complexation of paclitaxel by cyclohenicosakis-(1 → 2)-(β-d-glucopyranosyl), by cyclic-(1 → 2)-β-d-glucans (cyclo-sophoraoses), and by cyclomaltoheptaoses (β-cyclodextrins). Carbohydr. Res. 334(2), 119–126 (2001)

    Article  CAS  Google Scholar 

  14. Morris, V.J.: Biotechnically produced carbohydrates with functional properties for use in food systems. Food Biotechnol. 4, 45–57 (1990)

    Article  CAS  Google Scholar 

  15. Morris, V.J., Brownsey, G.J., Chilvers, G.R., Harris, J.E., Gunning, A.P., Stevens, B.H.J.: Possible biological roles for Rhizobium leguminosarum extracellular polysaccharide and cyclic glucans in bacteria-plant interactions for nitrogen-fixing bacteria. Food Hydrocoll. 5, 185–188 (1991)

    Article  CAS  Google Scholar 

  16. Lee, S., Park, H., Seo, D., Choi, Y., Jung, S.: Synthesis and characterization of carboxymethylated cyclosophoraose, and its inclusion complexation behavior. Carbohydr. Res. 339(3), 519–527 (2004)

    Article  CAS  Google Scholar 

  17. Park, H., Choi, Y., Kang, S., Lee, S., Kwon, C., Jung, S.: pH-dependent inclusion complexation of carboxymethylated cyclosophoraoses to N-acetyl phenylalanine. Carbohydr. Polym. 64, 85–89 (2006)

    Article  CAS  Google Scholar 

  18. Jeon, Y., Kwon, C., Cho, E., Jung, S.: Carboxymethylated cyclosophoraose as a novel chiral additive for the stereoisomeric separation of some flavonoids by capillary electrophoresis. Carbohydr. Res. 345(16), 2408–2412 (2010)

    Article  CAS  Google Scholar 

  19. Park, H., Lee, S., Kang, S., Jung, Y.J., Jung, S.: Enantioseparation using sulfated cyclosophoraoses as a novel chiral additive in capillary electrophoresis. Electrophoresis 25(16), 2671–2674 (2004)

    Article  CAS  Google Scholar 

  20. Kwon, C., Jung, S.: pH-dependent inclusion complexation of highly succinylated cyclosophoraoses with 4′-hydroxyflavanone. Bull. Korean Chem. Soc. 32(8), 2791–2794 (2011)

    Article  Google Scholar 

  21. Mahler, D.L., Forrest, W.H., Brown, C.R., Shroft, P.F., Gordon, H.E., Brown, B.W., James, K.E.: Assay of aspirin and naproxen analgesia. Clin. Pharmacol. Ther. 19(1), 18–22 (1976)

    CAS  Google Scholar 

  22. Calvo, M.V., Lanao, J.M., Dominguez-gil, A.: Bioavailability of rectally administered naproxen. Int. J. Pharm. 38, 117–122 (1987)

    Article  CAS  Google Scholar 

  23. Sevelius, M.H., Runkel, R., Segre, E., Blomfield, S.S.: Bioavailability of naproxen sodium and its relationship to clinical analgesic effects. Br. J. Clin. Pharmacol. 10(3), 259–263 (1980)

    CAS  Google Scholar 

  24. Valero, M., Carrillo, C., Rodríguez, L.J.: Ternary naproxen: beta-cyclodextrin: polyethylene glycol complex formation. Int. J. Pharm. 265(1–2), 141–149 (2003)

    Article  CAS  Google Scholar 

  25. Higuchi, T., Connors, K.A.: Phase solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  26. Constantin, M., Fundueanu, G.: Cyclodextrin-containing poly(vinyl alcohol) as non-viral gene delivery systems. 1. Preparation of polymers. Revue Roumaine de Chimie 54, 1031–1039 (2009)

    CAS  Google Scholar 

  27. Job, P.: Formation and stability of inorganic complexes in solution. Annali di Chimica Applicata 9, 113–203 (1928)

    CAS  Google Scholar 

  28. Forgo, P., D’Souza, V.T.: The application of selective ROE experiments to study solution structures of cyclomaltooligosacharide derivatives and complexes. Carbohydr. Res. 306(4), 473–478 (1998)

    Article  CAS  Google Scholar 

  29. Connor, K.A., Mollica, A.J.: Theoretical analysis of comparative studies of complex formation. J. Pharm. Sci. 55(8), 772–780 (1966)

    Article  Google Scholar 

  30. Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., Shenkin, P.S.: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47(7), 1739–1749 (2004)

    Article  CAS  Google Scholar 

  31. Kim, H., Jeong, K., Lee, S., Jung, S.: Molecular dynamics simulation of cyclosophoroheptadecaose (Cys-A). J. Comput. Aided Mol. Des. 16(8–9), 601–610 (2002)

    Article  CAS  Google Scholar 

  32. Klausen, K.S., Langmyhr, F.J.: The use of the method of continuous variation for the classification of complexes with mole ratio 1:1. Anal. Chim. Acta 28, 335–340 (1963)

    Article  CAS  Google Scholar 

  33. Erden, N., Çelebi, N.: A study of the inclusion complex of naproxen with β-cyclodextrin. Int. J. Pharm. 48, 83–89 (1988)

    Article  CAS  Google Scholar 

  34. Bettinetti, G., Melani, F., Mura, P., Monnanni, R., Giordano, H.: Carbon-13 nuclear magnetic resonance study of naproxen interaction with cyclodextrins in solution. J. Pharm. Sci. 80(12), 1162–1170 (1991)

    Article  CAS  Google Scholar 

  35. Bettinetti, G., Mura, P., Faucci, M.T., Sorrenti, M., Setti, M.: Interaction of naproxen with noncrystalline acetyl beta- and acetyl gamma-cyclodextrins in the solid and liquid state. Eur. J. Pharm. Sci. 15(1), 21–29 (2002)

    Article  CAS  Google Scholar 

  36. Kurkov, S.V., Ukhatskaya, E.V., Loftsson, T.: Drug/cyclodextrin: beyond inclusion complexation. J. Incl. Phenom. 69, 297–301 (2011)

    Article  CAS  Google Scholar 

  37. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65(1–2), 55–63 (1983)

    Article  CAS  Google Scholar 

  38. Hettiarachchi, G., Nguyen, D., Wu, J., Lucas, D., Ma, D., Isaacs, L., Briken, V.: Toxicology and drug delivery by cucurbit[n]uril type molecular containers. PLoS One 5(5), e10514 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2011-0026022) and by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093824). SDG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunho Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, C., Choi, Y., Jeong, D. et al. Inclusion complexation of naproxen with cyclosophoraoses and succinylated cyclosophoraoses in different pH environments. J Incl Phenom Macrocycl Chem 74, 325–333 (2012). https://doi.org/10.1007/s10847-012-0119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0119-7

Keywords

Navigation