Skip to main content
Log in

Application of resorcinarene derivatives in chemical separations

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The applications of resorcinarene derivatives in modern separation techniques including high performance liquid chromatography (HPLC), gas chromatography (GC), capillary electrophoresis (CE), ion chromatrography (IC), and liquid membranes are reviewed in this paper. Resorcinarenes are macrocyclic compounds which can be modified with various substituents on upper and lower rims to provide specific functionality and selectivity. The derivatives can be adsorbed or covalently bound to the stationary phase of HPLC, GC, and IC, or used as pseudo-stationary phase in CE to separate organic or inorganic species. They have been tested as carriers to selectively transfer species from source phase to receiving phase in bulk liquid membranes, supported liquid membranes, and polymer inclusion membranes. These broad applications of resorcinarene-based macrocyclic ligands indicate that they are a promising class of compounds that are worthwhile to be explored in both synthesis and separation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. Petrov, G.S., Grigor’ev, A.P.: Resorcinol-aldehyde resins. Zhurnal Khimicheskoi Promyshlennosti 18, 23–24 (1941)

    Google Scholar 

  2. Niederl, J.B., Vogel, H.J.: Aldehyde-resorcinol condensations. J. Am. Chem. Soc. 62, 2512–2514 (1940)

    Article  CAS  Google Scholar 

  3. Sverker Högberg, A.G.: Stereoselective synthesis and DNMR study of two 1,8,15,22-tetraphenyl[14]metacyclophan-3,5,10,12,17,19,24,26-octols. J. Am. Chem. Soc. 102, 6046–6050 (1980)

    Article  Google Scholar 

  4. Högberg, A.G.: Two stereoisomeric macrocyclic resorcinol-acetaldehyde condensation products. J. Org. Chem. 45, 4498–4500 (1980)

    Article  Google Scholar 

  5. Erdtman, H., Högberg, S., Abrahamsson, S., Nilsson, B.: Cyclooligomeric phenol-aldehyde condensation products I. Tetrahedron Lett. 9, 1679–1682 (1968)

    Article  Google Scholar 

  6. Rudkevich, D.M., Rebek Jr, J.: Deepening cavitands. Eur. J. Org. Chem. 9, 1991–2005 (1999)

    Article  Google Scholar 

  7. Salorinne, K., Weimann, D.P., Schalley, C.A., Nissinen, M.: Resorcinarene podand with amine-functionalized side arms-synthesis, structure, and binding properties of a neutral anion receptor. Eur. J. Org. Chem. 35, 6151–6159 (2009)

    Article  Google Scholar 

  8. O’Farrell, C.M., Hagan, K.A., Wenzel, T.J.: Water-soluble calix[4]resorcinarenes as chiral NMR solvating agents for bicyclic aromatic compounds. Chirality 21, 911–921 (2009)

    Article  Google Scholar 

  9. Chio, H.J., Park, Y.S., Youn, S.J., Kim, H.S., Kim, S.H., Koh, K., Paek, K.: Structure properties of benzimidazole cavitand and its selective recognition toward 4-methylbenzamide over 4-methylanilide. J. Org. Chem. 70, 5974–5981 (2005)

    Article  Google Scholar 

  10. Ghaedi, M., Karami, B., Ehsani, Sh., Marahel, F., Soylak, M.: Preconcentration-separation of Co, Ni, Cu and Cd in real samples by solid phase extraction of a calix[4]resorcinarene modified amberlite XAD-16 resin. J. Hazard. Mater. 172, 802–809 (2009)

    Article  CAS  Google Scholar 

  11. Wang, J., Harrison, R.G., Lamb, J.D.: Anion separation and preconcentration with cyclen and cyclen-resorcinarene derivatives. J. Chromatogr. Sci. 47, 510–515 (2009)

    Article  CAS  Google Scholar 

  12. Moll, H.E., Sémeril, D., Matt, D., Youinou, M.T., Toupet, L.: Synthesis of a resorcinarene-based tetraphosphine-cavitand and its use in Heck reaction. Org. Biomol. Chem. 7, 495–501 (2009)

    Article  Google Scholar 

  13. Shimizu, S., Shimada, N., Sasaki, Y.: Mannich-tyoe reactions in water using anionic water-soluble calixarenes as recoverable and reusable catalysts. Green Chem. 8, 608–614 (2006)

    Article  CAS  Google Scholar 

  14. Gissot, A., Rebek Jr, J.: A functionalized, deep cavitand catalyzes the aminolysis of a choline derivative. J. Am. Chem. Soc. 126, 7424–7425 (2004)

    Article  CAS  Google Scholar 

  15. Shirakawa, S., Shimizu, S.: Dehydrative amination of alcohols in water using a water-soluble calix[4]resorcinarene sulfonic acid. Synlett 10, 1539–1542 (2008)

    Google Scholar 

  16. Djernes, K.E., Moshe, O., Mettry, M., Richards, D.D., Hooley, R.J.: Metal-coordinated water-soluble cavitands act as C-H oxidation catalysts. Org. Lett. 14, 788–791 (2012)

    Article  CAS  Google Scholar 

  17. Cevasco, G., Thea, S., Vigo, D., Williams, A., Zaman, F.: Catalysis and inhibition of ester hydrolysis in the presence of resorcinarene hosts functionalized with dimethylamino groups. J. Phys. Org. Chem. 19, 630–636 (2006)

    Article  CAS  Google Scholar 

  18. Kashapov, R.P., Pashirova, T.N., Zhiltsova, E.P., Lukashenko, S.S., Ziganshina, A.Y., Zakharova, L.Y.: Supramolecular systems based on aminomethylated calix [4]resorcinarene and a cationic surfactant catalysts of the hydrolysis of esters of phosphorus acids. Russ. J. Phys. Chem. A 86, 200–204 (2012)

    Article  CAS  Google Scholar 

  19. Gibson, C., Rebek Jr, J.: Recognition and catalysis in allylic alkylations. Org. Lett. 4, 1887–1890 (2002)

    Article  CAS  Google Scholar 

  20. Moll, H.E., Sémeril, D., Matt, D., Toupet, L.: Resorcin[4]arene-derived mono- and diphosphines in Suzuki cross-coupling. Adv. Synth. Catal. 352, 901–908 (2010)

    Article  Google Scholar 

  21. O’Farrell, C.M., Chudomel, J.M., Collins, J.M., Dignam, C.F., Wenzel, T.J.: Water-soluble calix[4]resorcinarenes with hydroxyproline groups as chiral NMR solvating agents. J. Org. Chem. 73, 2843–2851 (2008)

    Article  Google Scholar 

  22. Mann, E., Rebek Jr, J.: Deepened chiral cavitands. Tetrahedron 64, 8484–8487 (2008)

    Article  CAS  Google Scholar 

  23. Mutihac, L., Lee, J.H., Kim, J.S., Vicens, J.: Recognition of amino acids by functionalized calixarenes. Chem. Soc. Rev. 40, 2777–2796 (2011)

    Article  CAS  Google Scholar 

  24. Śliwka-Kaszyńska, M.: Calixarenes as stationary phases in high performance liquid chromatography. Crit. Rev. Anal. Chem. 37, 211–224 (2007)

    Article  Google Scholar 

  25. Scriba, G.K.E.: Chiral recognition mechanisms in analytical separation sciences. Chromatographia 75, 815–838 (2012)

    Article  CAS  Google Scholar 

  26. Paik, M.J., Kang, J.S., Huang, B.S., Carey, J.R., Lee, W.: Development and application of chiral crown ethers as selectors for chiral separation in high-performance liquid chromatography and nuclear magnetic resonance spectroscopy. J. Chromatogr. A 1274, 1–5 (2013)

    Article  CAS  Google Scholar 

  27. Kitagawa, F., Otsuka, K.: Recent progress in capillary electrophoretic analysis of amino acid enantiomers. J. Chromatogr. B 879, 3078–3095 (2011)

    Article  CAS  Google Scholar 

  28. Kahle, K.A., Foley, J.P.: Review of aqueous chiral electrokinectic chromatography (EKC) with an emphasis on chiral microemulsion EKC. Electrophoresis 28, 2503–2526 (2007)

    Article  CAS  Google Scholar 

  29. Pietraszkiewicz, O., Pietraszkiewicz, M.: Separation of pyrimidine bases on a HPLC stationary RP-18 phase coated with calix[4]resorcinarene. J. Inclusion Phenom. Macrocyclic Chem. 35, 261–270 (1999)

    Article  CAS  Google Scholar 

  30. Pietraszkiewicz, O., Pietraszkiewicz, M.: Separation of pyrimidine bases on HPLC stationary RP-18 phase coated with calix[4]resorcinarene. Pol. J. Chem. 72, 2418–2422 (1998)

    CAS  Google Scholar 

  31. Pietraszkiewicz, M., Pietraszkiewicz, O., Kozbial, M.: Calix[4]resorcinarene as dynamic coating for modified stationary RP-18 phase for HPLC. Pol. J. Chem. 72, 1963–1970 (1998)

    CAS  Google Scholar 

  32. Sokoließ, T., Menyes, U., Roth, U., Jira, T.: Separation of cis- and trans-isomers of thioxanthene and dibenz[b, e]oxepin derivatives on calixarene- and resorcinarene bonded high-performance liquid chromatography stationary phases. J. Chromatogr. A 948, 309–319 (2002)

    Article  Google Scholar 

  33. Ruderisch, A., Iwanek, W., Pfeiffer, J., Fischer, G., Albert, K., Schurig, V.: Synthesis and characterization of a novel resorcinarene-based stationary phase bearing polar headgroups for use in reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1095, 40–49 (2005)

    Article  CAS  Google Scholar 

  34. Tan, H.M., Soh, S.F., Zhao, J., Yong, E.L., Gong, Y.H.: Preparation and application of methylcalix[4]resorcinarene-bonded silica particles as chiral stationary phase in high-performance liquid chromatography. Chirality 23, E91–E97 (2011)

    Article  CAS  Google Scholar 

  35. Lipkowski, J., Kalchenko, O.I., Slowikowska, J., Kalchenko, V.I., Lukin, O.V., Markovsky, L.N., Nowakowski, R.: Host-guest interactions of calix[4]resorcinarenes with benzene derivatives in conditions of reversed-phase high performance liquid chromatography. Determination of stability constants. J. Phys. Org. Chem. 11, 426–435 (1998)

    Article  CAS  Google Scholar 

  36. Zhang, H.B., Dai, R.J., Ling, Y., Wen, Y.X., Zhang, S., Fu, R.N., Gu, J.L.: Resorcarene derivative used as a new stationary phase for capillary gas chromatography. J. Chromatogr. A 787, 161–169 (1997)

    Article  CAS  Google Scholar 

  37. Ruderisch, A., Pfeiffer, J., Schurig, V.: Synthesis of an enatiomerically pure resorcinarene with pendant l-valine residues and attachment to a polysiloxane (chirasil-calix). Tetrahedron Asymmetry 12, 2025–2030 (2001)

    Article  CAS  Google Scholar 

  38. Pfeiffer, J., Schurig, V.: Enantiomer separation of amino acid derivatives on a new polymeric chiral resorc[4]arne stationary phase by capillary gas chromatography. J. Chromatogr. A 840, 145–150 (1999)

    Article  CAS  Google Scholar 

  39. Ruderisch, A., Pfeiffer, J., Schurig, V.: Mixed chiral stationary phase containing modified resorcinarene and β-cyclodextrin selectors bonded to a polysiloxane for enantioselective gas chromatography. J. Chromatogr. A 994, 127–135 (2003)

    Article  CAS  Google Scholar 

  40. Levkin, P.A., Ruderisch, A., Schurig, V.: Combining the enantioselectivity of a cyclodextrin and a diamide selector in a mixed binary gas-chromatographic chiral stationary phase. Chirality 18, 49–63 (2006)

    Article  CAS  Google Scholar 

  41. Bächmann, K., Bazzanella, A., Haag, I., Han, K.Y., Arnecke, R., Böhmer, V., Vogt, W.: Resorcinarenes pseudostationary phases with selectivity for electrokinetic chromatography. Anal. Chem. 67, 1722–1726 (1995)

    Article  Google Scholar 

  42. Bazzanella, A., Mörbel, H., Bächmann, K., Milbradt, R., Böhmer, V., Vogt, W.: Highly efficient separation of amines by electrokinetic chromatography using resorcarene-octacarboxylic acids as pseudostationary phases. J. Chromatogr. A 792, 143–149 (1997)

    Article  CAS  Google Scholar 

  43. Terabe, S., Otsuka, K., Ando, T.: Band broadening in electrokinetic chromatography with micellar solutions and open-tubular capillaries. Anal. Chem. 61, 251–260 (1989)

    Article  CAS  Google Scholar 

  44. Bazzanella, A., Bächmann, K., Milbradt, R., Böhmer, V., Vogt, W.: Discontinuous electrokinetic chromatography of parabens using different substituted resonances as pseudostationary phases. Electrophoresis 20, 92–99 (1999)

    Article  CAS  Google Scholar 

  45. Britz-Mckibbin, P., Chen, D.D.Y.: A water-soluble tetraethylsulfonate derivative of 2-methylresorcinarene as an addictive for capillary electrophoresis. Anal. Chem. 70, 907–912 (1998)

    Article  CAS  Google Scholar 

  46. Sokoließ, T., Gronau, M., Menyes, U., Roth, U., Jira, T.: Separation of (Z)- and (E)-isomers of thioxanthene and dibenz[b, e]oxepin derivatives with calixarenes and resorcinarenes as additives in nonaqueous capillary electrophoresis. Electrophoresis 24, 1648–1657 (2003)

    Article  Google Scholar 

  47. Sokoließ, T., Opolka, A., Menyes, U., Menyes, U., Roth, U., Jira, T.: Separation of racemic drugs on chiral resorcinarene-bonded HPLC-columns. Pharmazie. 57, 589–590 (2002)

    Google Scholar 

  48. Li, N., Yang, F., Stock, H.A., Dearden, D.V., Lamb, J.D., Harrison, R.G.: Resorcinarene-based cavitands with chiral amino acid substituents for chiral amine recognition. Org. Biomol. Chem. 10, 7392–7401 (2012)

    Article  CAS  Google Scholar 

  49. Li, N., English, C., Eaton, A., Gillespie, A., Ence, T.C., Christensen, T.J., Sego, A., Harrison, R.G., Lamb, J.D.: Cation separation and preconcentration using columns containing cyclen and cyclen-resorcinarene derivatives. J. Chromatogr. A 1245, 83–89 (2012)

    Article  CAS  Google Scholar 

  50. Li, N., Allen, L.J., Harrison, R.G., Lamb, J.D.: Transition metal cation separations with a resorcinarene-based amino acid stationary phase. Analyst 138, 1467–1474 (2013)

    Article  CAS  Google Scholar 

  51. Lamb, J.D., Li, N.: Ion chromatography and membrane separations using macrocyclic ligands. In: Gale, P.A., Steed, J.W. (eds.) Supramolecular Chemistry: From Molecules to Nanomaterials, pp. 563–587. Wiley, Oxford (2012)

    Google Scholar 

  52. Fedorenko, S.V., Mustafina, A.R., Ziganshina, A.U., Kazakova, E.K., Konovalov, A.I.: Calix[4]resorcinarene and alkylaminomethylated calix[4]resorcinarene-mediated transport of some metal complexes through chloroform bulky liquid membrane. Mater. Sci. Eng., C 18, 271–274 (2001)

    Article  Google Scholar 

  53. Gardner, J.S., Peterson, Q.P., Walker, J.O., Jensen, B.D., Adhikary, B., Harrison, R.G., Lamb, J.D.: Anion transport through polymer inclusion membranes facilitated by transition metal containing carriers. J. Membr. Sci. 277, 165–176 (2006)

    Article  CAS  Google Scholar 

  54. Benosmane, N., Hamdi, S.M., Hamdi, M., Boutemeur, B.: Selective transport of metal ions across polymer inclusion membrane (PIMs) containing calix[4]resorcinarenes. Sep. Purif. Technol. 65, 211–219 (2009)

    Article  CAS  Google Scholar 

  55. Rhlalou, T., Ferhat, M., Frouji, M.A., Langevin, D., Métayer, M., Verchère, J.F.: Facilitated transport of sugars by a resorcinarene through a support liquid membrane. J. Membr. Sci. 168, 63–73 (2000)

    Article  CAS  Google Scholar 

  56. Verchère, J.F.: Facilitated transport of saccharides through a support liquid membrane containing a neutral lipophilic resorcinarene carrier. Macromol. Symp. 188, 105–116 (2002)

    Article  Google Scholar 

  57. Tbeur, N., Rhlalou, T., Hlaïbi, M., Langevin, D., Métayer, M., Verchère, J.F.: Molecular recognition of carbohydrates by a resorcinarene, selective transport of alditols through a supported liquid membrane. Carbohydr. Res. 329, 409–422 (2000)

    Article  CAS  Google Scholar 

  58. Aoyama, Y., Tanaka, Y., Sugahara, S.: Molecular recognition 5. Molecular recognition of sugars via hydrogen-bonding interaction with a synthetic polyhydroxy macrocycle. J. Am. Chem. Soc. 111, 5397–5404 (1989)

    Article  CAS  Google Scholar 

  59. Touaj, K., Tbeur, N., Hor, M., Verchère, J.F., Hlaïbi, M.: A support liquid membrane (SLM) with resorcinarene for facilitated transport of methyl glycopyranosides: parameters and mechanism relating to the transport. J. Membr. Sci. 337, 28–38 (2009)

    Article  CAS  Google Scholar 

  60. Hlaïbi, M., Tbeur, N., Benjjar, A., Kamal, O., Lebrun, L.: Carbohydrate-resorcinarene complexes involved in the facilitated transport of alditols across a support liquid membrane. J. Membr. Sci. 377, 231–240 (2011)

    Article  Google Scholar 

  61. Jain, V.K., Pillai, S.G., Pandya, R.A., Agrawal, Y.K., Shrixastav, P.S.: Molecular octopus: octa functionalized calix[4]resorcinarene-hydroxamic acid [C4RAHA] for selective extraction, separation and preconcentration of U(VI). Talanta 65, 466–475 (2005)

    Article  CAS  Google Scholar 

  62. Gok, G., Seyhan, S., Merdivan, M., Yurdakoc, M.: Separation and preconcentration of La3+, Ce3+ and Y3+ using calix[4]resorcinarene impregnated on polymer support. Microchim. Acta 157, 13–19 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Lamb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, N., Harrison, R.G. & Lamb, J.D. Application of resorcinarene derivatives in chemical separations. J Incl Phenom Macrocycl Chem 78, 39–60 (2014). https://doi.org/10.1007/s10847-013-0336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-013-0336-8

Keywords

Navigation