Skip to main content

Advertisement

Log in

Inclusion complex formation of β-cyclodextrin and Naproxen: a study on exothermic complex formation by differential scanning calorimetry

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Inclusion complex formation between β-cyclodextrin and Naproxen was investigated using differential scanning calorimetry (DSC) as a function of the β-cyclodextrin-to-Naproxen molar ratio, ranging from 0:5:1 to 5:1. When these mixtures are heated above the melting temperature of Naproxen, an exothermic peak is observed at a temperature slightly higher than the melting peak of Naproxen. This peak, which has not been previously reported, has been interpreted as an exothermic energy of inclusion complex formation. The magnitude of this complex formation peak was found to be dependent upon the composition of the β-cyclodextrin and Naproxen mixture and increased in magnitude to a maximum value at a β-cyclodextrin:Naproxen molar ratio of 2:1. In addition, Naproxen recrystallization and re-melting peaks seen in the cooling and re-heating scans, respectively, decreased in magnitude with increasing molar ratio and totally disappeared for the mixture with 5:1 of β-cyclodextrin to Naproxen ratio indicative of complete inclusion of Naproxen in the cyclodextrin cavities. Complete inclusion was further reflected by the disappearance of key Naproxen peaks in Fourier transform infrared spectra of samples recovered from DSC experiments. The large excess of β-cyclodextrin needed to fully complex the Naproxen was found to be due to slow kinetics. Increasing the hold time after the initial melting led to inclusion efficiencies up to 95 % even for the 2:1 mixture. These experiments suggest that ratios of β-cyclodextrin:Naproxen 2:1 or greater facilitate the process by increasing the presence of cyclodextrin molecules in the close proximity of the drug molecules and lead to high inclusion efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Junquera, E., Aicart, E.: A fluorimetric, potentiometric and conductimetric study of the aqueous solutions of Naproxen and its association with hydroxypropyl-beta-cyclodextrin. Int. J. Pharm. 176(2), 169–178 (1999)

    Article  CAS  Google Scholar 

  2. Lombardino, J.G.: Nonsteroidal antiinflammatory drugs. Chemistry and pharmacology of drugs, vol. 5. Wiley, New York (1985)

    Google Scholar 

  3. Kawabata, A.: Prostaglandin E(2) and pain-an update. Biol. Pharm. Bull. 34(8), 1170–1173 (2011)

    Article  CAS  Google Scholar 

  4. Carrier, R.L., Miller, L.A., Ahmed, I.: The utility of cyclodextrins for enhancing oral bioavailability. J Control Release 123(2), 78–99 (2007)

    Article  CAS  Google Scholar 

  5. Challa, R., Ahuja, A., Ali, J., Khar, R.K.: Cyclodextrins in drug delivery: an updated review. Aaps Pharmscitech 6(2), E329–E357 (2005)

    Article  Google Scholar 

  6. Martin Del Valle, E.M.: Cyclodextrins and their uses: a review. Process. Biochem. 39(9), 1033–1046 (2004)

    Article  Google Scholar 

  7. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. USA 85(10), 1017–1025 (1996)

    Article  CAS  Google Scholar 

  8. Loftsson, T., Duchene, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329(1–2), 1–11 (2007)

    Article  CAS  Google Scholar 

  9. Bender, M.L., Komiyama, M.: Cyclodextrin Chemistry. Reactivity and Structure, vol. 6. Springer, Berlin (1978)

    Book  Google Scholar 

  10. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol. 62(11), 1607–1621 (2010)

    Article  CAS  Google Scholar 

  11. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications. Wiley, Hoboken (2011)

  12. Sadlej-Sosnowska, N., Kozerski, L., Bednarek, E., Sitkowski, J.: Fluorometric and NMR studies of the naproxen-cyclodextrin inclusion complexes in aqueous solutions. J. Incl. Phenom. Macro. 37(1–4), 383–394 (2000)

    Article  CAS  Google Scholar 

  13. Bettinetti, G., Sorrenti, M., Negri, A., Setti, M., Mura, P., Melani, F.: Interaction of Naproxen with alpha-cyclodextrin and its noncyclic analog maltohexaose. Pharmaceut. Res. 16(5), 689–694 (1999)

    Article  CAS  Google Scholar 

  14. Wang, J., Warner, I.M.: Studies of the naproxen–beta-cyclodextrin inclusion complex. Microchem. J. 48(2), 229–239 (1993)

    Article  CAS  Google Scholar 

  15. Bettinetti, G., Mura, P., Faucci, M.T., Sorrenti, M., Setti, M.: Interaction of Naproxen with noncrystalline acetyl beta- and acetyl gamma-cyclodextrins in the solid and liquid state. Eur. J. Pharm. Sci. 15(1), 21–29 (2002)

    Article  CAS  Google Scholar 

  16. Bettinetti, G.P., Sorrenti, M., Rossi, S., Ferrari, F., Mura, P., Faucci, M.T.: Assessment of solid-state interactions of Naproxen with amorphous cyclodextrin derivatives by DSC. J. Pharmaceut. Biomed. 30(4), 1173–1179 (2002)

    Article  CAS  Google Scholar 

  17. Junco, S., Casimiro, T., Ribeiro, N., Da Ponte, M.N., Marques, H.M.C.: Optimisation of supercritical carbon dioxide systems for complexation of naproxen: beta-cyclodextrin. J. Incl. Phenom. Macro. 44(1–4), 69–73 (2002)

    Article  CAS  Google Scholar 

  18. Moribe, K., Fujito, T., Tozuka, Y., Yamamoto, K.: Solubility-dependent complexation of active pharmaceutical ingredients with trimethyl-beta-cyclodextrin under supercritical fluid condition. J. Incl. Phenom. Macro. 57(1–4), 289–295 (2007)

    Article  CAS  Google Scholar 

  19. Mura, P., Bettinetti, G.P., Cirri, M., Maestrelli, F., Sorrenti, M., Catenacci, L.: Solid-state characterization and dissolution properties of naproxen-arginine-hydroxypropyl-beta-cyclodextrin ternary system. Eur. J. Pharm. Biopharm. 59(1), 99–106 (2005)

    Article  CAS  Google Scholar 

  20. Machin, R., Isasi, J.R., Velaz, I.: Beta-cyclodextrin hydrogels as potential drug delivery systems. Carbohyd. Polym. 87(3), 2024–2030 (2012)

    Article  CAS  Google Scholar 

  21. Junco, S., Casimiro, T., Ribeiro, N., Da Ponte, M.N., Marques, H.C.: A comparative study of naproxen—beta cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J. Incl. Phenom. Macro. 44(1–4), 117–121 (2002)

    Article  CAS  Google Scholar 

  22. Banik, A., Gogoi, P., Saikia, M.D.: Interaction of Naproxen with beta-cyclodextrin and its derivatives/polymer: experimental and molecular modeling studies. J. Incl. Phenom. Macro. 72(3–4), 449–458 (2012)

    Article  CAS  Google Scholar 

  23. Mura, P., Maestrelli, F., Cirri, M.: Ternary systems of Naproxen with hydroxypropyl-beta-cyclodextrin and aminoacids. Int. J. Pharm. 260(2), 293–302 (2003)

    Article  CAS  Google Scholar 

  24. Ganzagonzalez, A., Vilajato, J.L., Anguianoigea, S., Oteroespinar, F.J., Blancomendez, J.: A proton nuclear-magnetic-resonance study of the inclusion complex of Naproxen with beta-cyclodextrin. Int. J. Pharm. 106(3), 179–185 (1994)

    Article  CAS  Google Scholar 

  25. Arancibia, J.A., Escandar, G.M.: Determination of Naproxen in pharmaceutical preparations by room-temperature phosphorescence. A comparative study of several organized media. Analyst 126(6), 917–922 (2001)

    Article  CAS  Google Scholar 

  26. Kurkov, S.V., Ukhatskaya, E.V., Loftsson, T.: Drug/cyclodextrin: beyond inclusion complexation. J. Incl. Phenom. Macro. 69(3–4), 297–301 (2011)

    Article  CAS  Google Scholar 

  27. Gines, J.M., Arias, M.J., Perez-Martinez, J.I., Moyano, J.R., Morillo, E., Sanchez-Soto, P.J.: Determination of the stoichiometry of 2,3-dichlorophenoxyacetic acid beta-cyclodextrin complexes in solution and in solid state. Thermochim. Acta 321(1–2), 53–58 (1998)

    Article  CAS  Google Scholar 

  28. Singh, R., Bharti, N., Madan, J., Hiremath, S.: Characterization of cyclodextrin inclusion complexes—a review. J. Pharm. Sci. Technol. 2(3), 171–183 (2010)

    CAS  Google Scholar 

  29. Mura, P., Maestrelli, F., Cirri, M., Furlanetto, S., Pinzauti, S.: Differential scanning calorimetry as an analytical tool in the study of drug-cyclodextrin interactions. J. Therm. Anal. Calorim. 73(2), 635–646 (2003)

    Article  CAS  Google Scholar 

  30. Al-Marzouqi, A., Jobe, B., Corti, G., Cirri, M., Mura, P.: Physicochemical characterization of drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Incl. Phenom. Macro. 57(1–4), 223–231 (2007)

    Article  CAS  Google Scholar 

  31. Al-Marzouqi, A.H., Elwy, H.M., Shehadi, I., Adem, A.: Physicochemical properties of antifungal drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Pharmaceut. Biomed. 49(2), 227–233 (2009)

    Article  CAS  Google Scholar 

  32. Banchero, M., Manna, L.: The use of lysine to enhance the supercritical complexation of ketoprofen and cyclodextrins. J. Supercrit. Fluids 67, 76–83 (2012)

    Article  CAS  Google Scholar 

  33. Koester, L.S., Xavier, C.R., Mayorga, P., Bassani, V.L.: Influence of beta-cyclodextrin complexation on carbamazepine release from hydroxypropyl methylcellulose matrix tablets. Eur. J. Pharm. Biopharm. 55(1), 85–91 (2003)

    Article  CAS  Google Scholar 

  34. Spyriouni, T., Krokidis, X., Economou, I.G.: Thermodynamics of pharmaceuticals: prediction of solubility in pure and mixed solvents with PC-SAFT. Fluid Phase Equilibr. 302(1–2), 331–337 (2011)

    Article  CAS  Google Scholar 

  35. Dodziuk, H.: Rigidity versus flexibility. A review of experimental and theoretical studies pertaining to the cyclodextrin nonrigidity. J. Mol. Struct. 614(1–3), 33–45 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Science Foundation (CBET #0929978).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdogan Kiran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandelli, H.E., Stickle, B., Whittington, A. et al. Inclusion complex formation of β-cyclodextrin and Naproxen: a study on exothermic complex formation by differential scanning calorimetry. J Incl Phenom Macrocycl Chem 77, 269–277 (2013). https://doi.org/10.1007/s10847-012-0241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0241-6

Keywords

Navigation