Skip to main content
Log in

Effect of hydroxypropyl-β-cyclodextrin complexation on the aqueous solubility, structure, thermal stability, antioxidant activity, and tyrosinase inhibition of paeonol

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The objective of this paper is to study the effect of hydroxypropyl-β-cyclodextrin (HP-β-CD) complexation on the aqueous solubility, structure, thermal stability, antioxidant activity, and tyrosinase inhibition of paeonol (PAE). The inclusion complex (PAE-HP-β-CD complex) of HP-β-CD and PAE was prepared by a freeze-drying method. Phase solubility tests showed that the stability constant of the inclusion complex was about 33.8 M−1 at 25 °C. The experimental results of proton nuclear magnetic resonance (H-NMR) spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) suggested that PAE was included by HP-β-CD to form the PAE-HP-β-CD complex. Furthermore, the thermogravimetric analysis (TGA) results showed that the thermal stability of PAE was improved when it was complexed with HP-β-CD. Comparing the antioxidant activity of PAE with that of the PAE-HP-β-CD complex at the same concentration revealed that the complex of PAE with HP-β-CD was better able to eliminate radical. Furthermore, the experimental results revealed that the formation of a complex with HP-β-CD increased the water solubility of PAE, improving its apparent inhibitive activity of tyrosinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier system. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  2. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process. Biochem. 39, 1033–1046 (2004)

    Article  CAS  Google Scholar 

  3. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  4. Li, J., Loh, X.J.: Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv. Drug Deliv. Rev. 60, 1000–1017 (2008)

    Article  CAS  Google Scholar 

  5. Vyas, A., Saraf, S.: Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem. 62, 23–42 (2008)

    Article  CAS  Google Scholar 

  6. Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Gándara, J.: A review on the use of cyclodextrins in foods. Food Hydrocolloids 23, 1631–1640 (2009)

    Article  CAS  Google Scholar 

  7. Cal, K., Centkowska, K.: Use of cyclodextrins in topical formulations: practical aspects. Eur. J. Pharm. Biopharm. 68, 467–478 (2008)

    Article  CAS  Google Scholar 

  8. Yoshikawa, M., Uchida, E., Kawaguchi, A., Kitagawa, I., Yamahara, J.: Galloyl-oxypaeoniflorin, suffruticosides A, B, C, and D, five new antioxidative glycosides, and suffruticoside E, a paeonol glycoside, from Chinese Moutan Cortex. Chem. Pharm. Bull. 40, 2248–2250 (1992)

    Article  CAS  Google Scholar 

  9. Ishiguro, K., Ando, T., Maeda, O., Hasegawa, M., Kadomatsu, K., Ohmiya, N., Niwa, Y., Xavier, R., Goto, H.: Paeonol attenuates TNBS-induced colitis by inhibiting NFkappaB and STAT1 transactivation. Toxicol. Appl. Pharm. 217, 35–42 (2006)

    Article  CAS  Google Scholar 

  10. Nizamutdinova, I.T., Oh, H.M., Min, Y.N., Park, S.H., Lee, M.J., Kim, J.S., Yean, M.H., Kang, S.S., Kim, Y.S., Chang, K.C., Kim, H.J.: Paeonol suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking p38, ERK and nuclear factor-kappaB signaling pathways. Int. Immunopharmacol. 7, 343–350 (2007)

    Article  CAS  Google Scholar 

  11. Chou, T.C.: Anti-inflammatory and analgesic effects of paeonol in carrageenanevoked thermal hyperalgesia. Br. J. Pharmacol. 13, 1146–1152 (2003)

    Article  Google Scholar 

  12. Tsai, H., Lin, H., Fong, Y., Wu, J., Chen, Y., Tsuzuki, M., Tang, C.: Paeonol inhibits RANKL-induced osteoclastogenesis by inhibiting ERK, p38 and NF-κB pathway. Eur. J. Pharmacol. 588, 124–133 (2008)

    Article  CAS  Google Scholar 

  13. Chung, J.G.: Paeonol promotion of DNA adduct formation and arylamines Nacetyltransferase activity in human colon tumour cells. Food Chem. Toxicol. 37, 327–334 (1999)

    Article  CAS  Google Scholar 

  14. Xie, S., Chen, Z., Ma, P.: Down-regulation of melanin synthesis and transfer by paeonol and its mechanisms. Am. J. Chin. Med. 35, 139–151 (2007)

    Article  CAS  Google Scholar 

  15. Li, Z.X., Ren, R.: The preparation for the inclusion complex of paeonol-bcyclodextrin. Chin. Pharm. J. 39, 305–306 (2004)

    CAS  Google Scholar 

  16. Sun, D., Li, L., Qiu, X., Liu, F., Yin, B.: Isothermal titration calorimetry and 1H NMR studies on host–guest interaction of paeonol and two of its isomers with b-cyclodextrin. Int. J. Pharm. 316, 7–13 (2006)

    Article  CAS  Google Scholar 

  17. Sun, D., Li, L., Qiu, X., Liu, M., Yin, B.: Cyclodextrins binding to paeonol and two of its isomers in aqueous solution. Isothermal titration calorimetry and 1H NMR investigations of molecular recognition. J. Solut. Chem. 35, 1537–1549 (2006)

    Article  CAS  Google Scholar 

  18. Tsao, J., Tsai, H., Wu, C., Lin, P., Su, S., Chen, L., Tsai, F., Tsai, Y.: Release of paeonol-β-CD complex from thermo-sensitive poly(N-isopropylacrylamide) hydrogels. Int. J. Pharm. 402, 123–128 (2010)

    Article  CAS  Google Scholar 

  19. Tsai, Y., Tsai, H., Wu, C., Tsai, F.: Preparation, characterization and activity of the inclusion complex of paeonol with b-cyclodextrin. Food Chem. 120, 837–841 (2010)

    Article  CAS  Google Scholar 

  20. Gould, S., Scott, R.C.: 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem. Toxicol. 43, 1451–1459 (2005)

    Article  CAS  Google Scholar 

  21. Higuchi, T., Connors, K.A.: Phase solubility technique. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  22. Strazisar, M., Andrensek, S., Smidovnik, A.: Effect of b-cyclodextrin on antioxidant activity of coumaric acids. Food Chem. 110, 636–642 (2008)

    Article  CAS  Google Scholar 

  23. Jullian, C., Orosteguis, T., P′erez-Cruzb, F., S′anchez, P., Mendizabal, F., Olea-Azar, C.: Complexation of morin with three kinds of cyclodextrin, a thermodynamic and reactivity study. Spectrochim. Acta A 71, 269–275 (2008)

    Article  Google Scholar 

  24. Lim, T.Y., Lim, Y.Y., Yule, C.M.: Evaluation of antioxidant, antibacterial and anti-tyrosinase activities of four Macaranga species. Food Chem. 114, 594–599 (2009)

    Article  CAS  Google Scholar 

  25. Meier, M.M., Bordignon Luiz, M.T., Farmer, P.J., Szpoganicz, B.: The influence of beta- and gammacyclodextrin cavity size on the association constant with decanoate and octanoate anions. J. Incl. Phenom. Macrocycl. Chem. 40, 291–295 (2001)

    Article  CAS  Google Scholar 

  26. Tongiani, S., Velde, D.V., Ozeki, T., Stella, V.J.: Sulfoalkyl ether-alkyl ether cyclodextrin derivatives, their synthesis, NMR characterization, and binding of 6alpha-methylprednisolone. J. Pharm. Sci. 94, 2380–2392 (2005)

    Article  CAS  Google Scholar 

  27. Axel Castelli, V.V., Trivieri, G., Zucchelli, I., Brambilla, L., Barbuzzi, T., Castiglioni, C., Paci, M., Zerbi, G., Zanol, M.: Characterisation of an inclusion complex between cladribine and 2-hydroxypropyl-b-cyclodextrin. J. Pharm. Sci. 97, 3897–3906 (2008)

    Article  Google Scholar 

  28. Koontz, J.L., Marcy, J.E., O’Keefe, S.F., Duncan, S.E.: Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants r-tocopherol and quercetin. J. Agric. Food Chem. 57, 1162–1171 (2009)

    Article  CAS  Google Scholar 

  29. Parmar, K.R., Patel, K.A., Shah, S.R., Sheth, N.R.: Inclusion complexes of lamotrigine and hydroxy propyl b-cyclodextrin: solid state characterization and dissolution studies. J. Incl. Phenom. Macrocycl. Chem. 65, 263–268 (2009)

    Article  CAS  Google Scholar 

  30. Calderini, A., Pessine, F.B.T.: Synthesis and characterization of inclusion complex of the vasodilator drug minoxidil with b-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 60, 369–377 (2008)

    Article  CAS  Google Scholar 

  31. Tominaga, H., Kobayashi, Y., Goto, T., Kasemura, K., Nomura, M.: DPPH radical-scavenging effect of several phenylpropanoid compounds and their glycoside derivatives. Yakugaku Zasshi 125, 371–375 (2005)

    Article  CAS  Google Scholar 

  32. Jullian, C., Moyano, L., Yanez, C., Olea-Azar, C.: Complexation of quercetin with three kinds of cyclodextrins: an antioxidant study. Spectrochim. Acta A 67, 230–234 (2007)

    Article  Google Scholar 

  33. Lu, Z., Cheng, B., Hu, Y., Zhang, Y., Zou, G.: Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity. Food Chem. 113, 17–20 (2009)

    Article  CAS  Google Scholar 

  34. Fayad, N., Marchal, L., Billaud, C., Nicolas, J.: Comparison of a-cyclodextrin effect on polyphenol oxidation catalyzed by purified polyphenol oxidase from different sources. J. Agric. Food Chem. 45, 2442–2446 (1997)

    Article  CAS  Google Scholar 

  35. Alvarez-Parrilla, E., de la Rosa, L.A., Rodrigo-García, J., Escobedo-González, R., Mercado-Mercado, G., Moyers-Montoya, E., Vázquez-Flores, A., González-Aguilar, G.A.: Dual effect of β-cyclodextrin (β-CD) on the inhibition of apple polyphenol oxidase by 4-hexylresorcinol (HR) and methyl jasmonate (MJ). Food Chem. 101, 1346–1356 (2007)

    Article  CAS  Google Scholar 

  36. Villalonga, R., Cao, R., Fragoso, A.: Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 107, 3088–3116 (2007)

    Article  CAS  Google Scholar 

  37. Orenes-Piñero, E., García-Carmona, F., Sánchez-Ferrer, A.: Kinetic characterization of diphenolase activity from Streptomyces antibioticus tyrosinase in the presence and absence of cyclodextrins. J. Mol. Catal. B Enzym. 47, 143–148 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from China Medical University (CMU98-OC-01 and CMU99-S-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhsin Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsao, JY., Wu, CP., Tsai, HH. et al. Effect of hydroxypropyl-β-cyclodextrin complexation on the aqueous solubility, structure, thermal stability, antioxidant activity, and tyrosinase inhibition of paeonol. J Incl Phenom Macrocycl Chem 72, 405–411 (2012). https://doi.org/10.1007/s10847-011-0003-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0003-x

Keywords

Navigation