Skip to main content
Log in

Cyclodextrins Binding to Paeonol and Two of Its Isomers in Aqueous Solution. Isothermal Titration Calorimetry and 1H NMR Investigations of Molecular Recognition

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Interactions between CDs with three substituted phenols, paeonol (Pae), acetovanillone (Ace) and 2-hydroxyl-5-methoxy-acetophone (Hma), which are isomers, have been determined by isothermal titration calorimetry (ITC) and 1H NMR in aqueous solution at 298.2 K. Both the binding thermodynamics and 1H NMR spectra show that the interaction between α-cyclodextrin (α-CD) molecule and each guest molecule is extremely weak. The thermodynamic parameters indicate that the binding processes of β-cyclodextrin (β-CD) with the isomers are mainly entropy driven and that β-CD binds with Pae or Ace in 1:1 stoichiometry, whereas with Hma binds in 1:1 and 2:1 stoichiometries. The thermodynamic parameters also suggest that γ-cyclodextrin (γ-CD) binds each isomer in the same 1:1 stoichiometry. The binding processes of Pae and Hma with γ-CD are enthalpy driven whereas Ace with γ-CD is predominantly driven by entropy. The 1H NMR spectra reveal that the three isomers were trapped into the torus cavity of the β-CD molecule from the narrow side during the binding process. Pae penetrates into the γ-CD cavity from the primary rim of the macrocycle whereas Ace does so from the secondary rim, but Hma appears not interact with the internal cavity of γ-CD at all.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)

    Article  CAS  Google Scholar 

  2. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier system. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  3. Loftsson, T., Masson, M.: Cyclodextrins in topical drug formulations: Theory and practice. Int. J. Pharm. 225, 15–30 (2001)

    Article  CAS  Google Scholar 

  4. Duan, M.S., Zhao, N., Össurardóttir, I.B., Thorsteinsson, T., Lofftsson, T.: Cyclodextrin solubilization of the antibacterial agents triclosan and triclocarban: Formation of aggregates and higher-order complexes. Int. J. Pharm. 297, 213–222 (2005)

    CAS  Google Scholar 

  5. Szejitli, J.: Cyclodextrins and Their Inclusion Complexes, pp. 2–10. Akademiai Kiado Press, Budapest, Hungary (1982)

    Google Scholar 

  6. Cao, Y.J., Xiao, X.H., Lu, R.H., Guo, Q.X.: 1H NMR titration and quantum calculation for the inclusion complexes of styrene and α-methyl styrene with α, β- and γ-cyclodextrins. J. Mol. Struct. 660, 73–80 (2003)

    Article  CAS  Google Scholar 

  7. Kuroda, Y., Hiroshige, T., Sera, T., Shiroiwa, Y., Tanaka, H., Ogoshi, H.: Cyclodextein-sandwiched porphyrin. J. Am. Chem. Soc. 111, 1912–1913 (1989)

    Article  CAS  Google Scholar 

  8. Breslow, R., Czarnik, A.W.: Transaminations by pyridoxamine selectively attached at C-3 in β-cyclodextrin. J. Am. Chem. Soc. 105, 1390–1391 (1983)

    Article  CAS  Google Scholar 

  9. Eftink, M.R., Harrison, J.C.: Calorimetric studies of p-nitrophenol binding to α- and β-cyclodextrin. Bioorg. Chem. 10, 388–398 (1981)

    Article  CAS  Google Scholar 

  10. Kim, S.H., Kim, S.A., Park, M.K., Kim, S.H., Park, Y.D., Na, H.J., Kim, H.M., Shin, M.K., Ahn, K.S.: Paeonol inhibits anaphylactic reaction by regulating histamine and TNF-α. Int. Immunopharmacol. 4, 279–287 (2004)

    Article  CAS  Google Scholar 

  11. Wu, X.A., Chen, H.L., Chen, X.G., Hu, Z.D.: Determination of paeonol in rat plasma by high-performance liquid chromatography and its application to pharmacokinetic studies following oral administration of Moutan cortex decoction. Biomed. Chromatogr. 17, 504–508 (2003)

    Article  CAS  Google Scholar 

  12. Chou, T.C.: Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia. British J. Pharmacology 139, 1146–1152 (2003)

    Article  CAS  Google Scholar 

  13. Vejrazka, M., Míek, R., típek, S.: Apocynin inhibits NADPH oxdase in phagocytes but stimulates ROS production in non-phagocytic cells. Biochim. Biophys. Acta 1722, 143–147 (2005)

    Google Scholar 

  14. Van den Worm, E., Beukelman, C.J., Van den Berg, A.J.J., Kroes, B.H., Labadie, R.P., Dijk, H.V.: Effect of methoxylation of apocynin and analogs on the inhibition of reactive oxygen species production by stimulated human neutrophils. Eur. J. Pharmacol. 433, 225–230 (2001)

    Article  Google Scholar 

  15. Peters, E.A., Hiltermann, J.T.N., Stolk, J.: Effect of apocynin on ozone-induced airway hyperresponsiveness to methacholine in asthmatics. Free Radic. Biol. Med. 31, 1442–1447 (2001)

    Article  CAS  Google Scholar 

  16. Li, Z.X., Ren, R.: The preparation for the inclusion complex of paeonol-β-cyclodextrin. Chin. Pharm. J. 39, 305–306 (2004)

    CAS  Google Scholar 

  17. Cliff, M.J., Ladbury, J.E.: A survey of the year 2002 literature on applications of isothermal titration calorimetry. J. Mol. Recognit. 16, 383–391 (2003)

    Article  CAS  Google Scholar 

  18. Jelesarov, I., Bosshard, H.R.: Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12, 3–18 (1999)

    Article  CAS  Google Scholar 

  19. Lafitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A.A., Klich, M., Deprez, P., Moras, D., Briand, C., Gilli, R.: DNA gyrase interaction with coumarin-based inhibitors: The role of the hydroxybenzoate isopentenyl moiety and the 5′-methyl group of the noviose. Biochem. 41, 7217–7223 (2002)

    Article  CAS  Google Scholar 

  20. Ohtaka, H., Velaquez-Campoy, A., Xie, D., Freire, E.: Overcoming drug resistance in HIV-1 chemotherapy: The binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease. Protein Sci. 11, 1908–1916 (2002)

    Article  CAS  Google Scholar 

  21. Thompson, G., Owen, D., Chalk, P.A., Lowe, P.N.: Delineation of the Cdc42/Rac-binding domain of p21-activated kinase. Biochem. 37, 7885–7891 (1998)

    Article  CAS  Google Scholar 

  22. Dragan, A.I., Klass, J., Read, C., Churchill, M.E.A., Crane-Robinson, C., Privalov, P.L.: DNA binding of a non-sequence-specific HMG-D protein is entropy driven with a substantial non-electrostatic contribution. J. Mol. Biol. 331, 795–813 (2003)

    Article  CAS  Google Scholar 

  23. Abraham, T., Lewis, R.N.A.H., Hodges, R.S., McElhaney, R.N.: Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin S to phospholipid bilayer membranes. Biochem. 44, 2103–2112 (2005)

    Article  CAS  Google Scholar 

  24. Bou-Abdallah, F., Arosio, P., Santambrogio, P., Yang, X., Janus-Chandler, C., Chasteen, N.D.: Ferrous ion binding to recombinant human H-chain ferritin. An isothermal titration calorimetry study. Biochem. 41, 11184–11191 (2002)

    Article  CAS  Google Scholar 

  25. Lobo, B.A., Davis, A., Koe, G., Smith, J.G., Middaugh, C.R.: Isothermal titration calorimetric analysis of the interaction between lipids and plasmid DNA. Arch. Biochem. Biophys. 386, 95–105 (2001)

    Article  CAS  Google Scholar 

  26. Saboury, A.A., Bagheri, S., Ataie, G., Amanlou, M., Moosavi-Movahedi, A.A., Hakimelahi, G.H., Cristalli, G., Namaki, S.: Binding peoperties of adenosine deaminase interacted with theophylline. Chem. Pharm. Bull. 52, 1179–1182 (2004)

    Article  CAS  Google Scholar 

  27. Joshi, H., Shirude, P.S., Bansal, V., Ganesh, K.N., Sastry, M.: Isothermal titration calorimetry studies on the binding of amino acids to gold nanoparticles. J. Phys. Chem. B 108, 11535–11540 (2004)

    Article  CAS  Google Scholar 

  28. Buckton, G., Beezer, A.E.: The applications of microcalorinetry in the field of physical pharmacy. Int. J. Pharm. 72, 181–191 (1991)

    Article  CAS  Google Scholar 

  29. Cliff, M.J., Gutierrez, A., Ladbury, J.E.: A survey of the year 2003 literature on applications of isothermal titration calorimetry. J. Mol. Recognit. 17, 513–523 (2004)

    Article  CAS  Google Scholar 

  30. Fernandes, C.M., Caralho, R.A., Pereira da Costa, S., Veiga, F.J.B.: Multimodal molecular encapsulation of nicardipine hydrochloride by β-cyclodextrin, hydroxypropyl-β-cyclodextrin and triacetyl-β-cyclodextrin in solution. Structural studies by 1H NMR and ROESY experiments. Eur. J. Pharm. Sci. 18, 285–296 (2003)

    Article  CAS  Google Scholar 

  31. Salvatierra, D., Jaime, E., Virgili, A., Sánchez-Ferrando, F.: Determination of the inclusion geometry for the β-cyclodextrin/benzoic acid complex by NMR and molecular modeling. J. Org. Chem. 61, 9578–9581(1996)

    Article  CAS  Google Scholar 

  32. Bai, G.Y., Wang, Y.J., Yan, H.K.: Thermodynamics of interaction between cationic gemini surfactants and hydrophobically modified polymers in aqueous solutions. J. Phys. Chem. B. 106, 2153–2159 (2002)

    Article  CAS  Google Scholar 

  33. Isabel, G.O., Hallén, D.: The thermodynamics of the binding of benzene to β-cyclodextrin in aqueous solution. Thermochim. Acta 221, 183–193 (1993)

    Article  Google Scholar 

  34. Manzoori, J.L., Amjadi, M.: Spectrofluorimetric study of host-guest complexation of ibuprofen with β-cyclodextrin and its analytical application. Spectrochim. Acta, A: Mol. Biomol. Spectosc. 59, 909–916 (2003)

    Article  Google Scholar 

  35. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

  36. Otagiri, M., Uekama, K., Ikeda, K.: Inclusion complexes of β-cyclodextrin with tranquilizing drugs phenothiazines in aqueous solution. Chem. Pharm. Bull. 23, 188–195 (1975)

    CAS  Google Scholar 

  37. Ventura, C.A., Puglisi, G., Zappalà, M., Mazzone, G.: A physico-chemical study on the interaction between papaverine and natural and modified β-cyclodextrins. Int. J. Pharm. 160, 163–172 (1998)

    Article  CAS  Google Scholar 

  38. Ganza-Gonzalez, A., Vila-Jato, J.L., Anguiano-Igea, S., Otero-Espinar, F.J., Blanco-Méndez, J.: A proton nuclear magnetic resonance study of the inclusion complex of naproxen with β-cyclodextrin. Int. J. Pharm. 106, 179–185 (1994)

    Article  CAS  Google Scholar 

  39. Djedaïni, F., Lin, S.Z., Perly, B., Wouessidjewe, D.: High-field nuclear magnetic resonance techniques for the investigation of a β-cyclodextrin: Indomethacin inclusion complex. J. Pharm. Sci. 79, 643–646 (1990)

    Article  Google Scholar 

  40. Zhang, D.D., Zhao, P. Y., Huang, N.J., Wu, Y.L., Zhai, Y.M.: Study of H-NMR spectra of α-cyclodextrin or dimethylcyclodextrin/toluene complexes in CF3COOD/D2O. In: Duchêne, D. (ed.), Minutes of the Fifth International Sympoxium on Cyclodextrins. pp. 146–149. Editions de Santé Press, Paris (1990)

    Google Scholar 

  41. Zhu, Q.H., Shao, Y.W., He, J.F., Deng, Q.Y.: The 1HNMR study on the β-cyclodextrin host-guest complexes. Chin. J. Magn. Reson. 18, 377–382 (2001)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-zhi Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Dz., Li, L., Qiu, Xm. et al. Cyclodextrins Binding to Paeonol and Two of Its Isomers in Aqueous Solution. Isothermal Titration Calorimetry and 1H NMR Investigations of Molecular Recognition. J Solution Chem 35, 1537–1549 (2006). https://doi.org/10.1007/s10953-006-9075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9075-4

Keywords

Navigation