Skip to main content
Log in

Inclusion complexes of fusidic acid and three structurally related compounds with cyclodextrins

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The inclusion complexes between fusidate, 3-keto fusidate, 11-keto fusidate and 11-deoxy fusidate and α-, β-, and γ-cyclodextrin (CD) were studied using capillary electrophoresis. By monitoring the changes in mobility of the negatively charged compounds in the presence of varying amount of CD the stability constants of the complexes formed could be obtained. In the case of α- and β-CD the obtained results could be modelled to a simple model assuming 1:1 stoichiometry, revealing, not surprisingly, that β-CD formed a stronger complex compared to α-CD. A model assuming 1:2 (fusidate:CD) stoichiometry could be fitted to the data obtained with γ-CD. The results showed that the different fusidanes formed very strong 1:1 complexes with γ-CD as well as a quite weak 1:2 complex. 3-keto-, 11-keto- and 11-deoxy-fusidate formed stronger complexes compared to fusidate, probably due to an decrease in hydrophilicity caused by the reduced number of hydroxyl groups. The complex between γ-CD and fusidate was studied by use of 2D-NMR spectroscopy. The results showed that most of the hydrogen atoms of fusidate show interactions with the hydrogen atoms in the cavity of γ-CD. The interaction pattern suggests that fusidate may be fully embedded in the cavity of γ-CD. No interactions between fusidate and the hydrogen atoms situated at the outside of the CD were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CD:

Cyclodextrin

COSY:

Correlation spectroscopy

DQF:

Double Quantum Filtered

ROESY:

Rotating Overhauser Effect Spectroscopy

References

  1. Wilkinson, J.D.: Fusidic acid in dermatology. Br. J. Dermatol. Suppl. 139, 37–40 (1998)

    Article  CAS  Google Scholar 

  2. Turnidge, J.: Fusidic acid pharmacology, pharmacokinetics and pharmacodynamics. Int. J. Antimicrob. Agents. 12, S23 (1999)

    Article  CAS  Google Scholar 

  3. Habon, I., Stadler-Szöke, A., Szejtli, J.: Improvement of the solubility of steroids by formation of cyclodextrin inclusion complex. Acta. Biochim. Biophys. Acad. Sci. Hung. 19, 86 (1984)

    Google Scholar 

  4. Ahmed, S.M.: Improvement of solubility and dissolution of 19-norprogesterone via inclusion complexation. J. Inclusion Phenom. 30, 111–125 (1998)

    Article  CAS  Google Scholar 

  5. Uekama, K., Otagiri, M., Uemura, Y., Fujinaga, T., Arimori, K., Matsuo, N., Tasaki, K., Sugii, A.: Improvement of oral bioavailability of prednisolone by beta-cyclodextrin complexation in humans. J. Pharmacobiodyn 6, 124–127 (1983)

    CAS  Google Scholar 

  6. Uekama, K., Sakai, A., Arimori, K., Otagiri, M., Saitô, H.: Different mode of prednisolone within alpha-cyclodextrins, beta-cyclodextrins and gamma-cyclodextrins in aqueous-solution and in solid state. Pharm. Acta. Helv. 60, 117–121 (1985)

    CAS  Google Scholar 

  7. Uekama, K., Fujinaga, T., Otagiri, M., Yamasaki, M.: Inclusion complexations of steroid-hormones with cyclodextrins in water and solid-phase. Int. J. Pharm. 10, 1–15 (1982)

    Article  CAS  Google Scholar 

  8. Liu, F.Y., Kildsig, D.O., Mitra, A.K.: Beta-cyclodextrin steroid complexation – Effects of steroid structure on association equilibria. Pharm. Res. 7, 869–873 (1990)

    Article  CAS  Google Scholar 

  9. Djedaïni, F., Perly, B.: Nuclear-Magnetic-Resonance investigation of the stoichiometries in beta-cyclodextrin-steroid inclusion complexes. J. Pharm. Sci. 80, 1157–1161 (1991)

    Article  Google Scholar 

  10. Marzona, M., Carpignano, R., Quargliotto, P.: Quantitative structure-stability relationships in the inclusion complexes of steroids with cyclodextrins. Ann. Chim. 82, 517–537 (1992)

    CAS  Google Scholar 

  11. Forgo, P., Vincze, I., Kover, K.E.: Inclusion complexes of ketosteroids with beta-cyclodextrin. Steroids 68, 321–327 (2003)

    Article  CAS  Google Scholar 

  12. Cabrer, P.R., Alvarez-Parrilla, E., Meijide, F., Seijas, J.A., Nunez, E.R., Tato, J.V.: Complexation of sodium cholate and sodium deoxycholate by beta-cyclodextrin and derivatives. Langmuir 15, 5489–5495 (1999)

    Article  Google Scholar 

  13. Pean, C., Creminon, C., Wijkhuisen, A., Perly, B., Djedaïni-Pilard, F.: Reliable NMR experiments for the study of beta-cyclodextrin/prostaglandin E-2 inclusion complex. J. Chim. Phys. Phys. Chim. Biol. 96, 1486–1493 (1999)

    Article  CAS  Google Scholar 

  14. Forgo, P., Göndös, G.: A study of beta-cyclodextrin inclusion complexes with progesterone and hydrocortisone using rotating frame Overhauser spectroscopy. Monatsh. Chem. 133, 101–106 (2002)

    Article  CAS  Google Scholar 

  15. Cameron, K.S., Fletcher, D., Fielding, L.: An NMR study of cyclodextrin complexes of the steroidal neuromuscular blocker drug Rocuronium Bromide. Magn. Reson. Chem. 40, 251–260 (2002)

    Article  CAS  Google Scholar 

  16. Bednarek, E., Bocian, W., Poznanski, J., Sitkowski, J., Sadlej-Sosnowska, N., Kozerski, L.: Complexation of steroid hormones: prednisolone, ethinyloestradiol and estriol with beta-cyclodextrin. An aqueous H-1 NMR study. J. Chem. Soc. Perkin. Trans. 2, 999–1004 (2002)

    Google Scholar 

  17. Jover, A., Budal, R.M., Al-Soufi, W., Meijide, F., Tato, J.V., Yunes, R.A.: Spectra and structure of complexes formed by sodium fusidate and potassium helvolate with beta- and gamma-cyclodextrin. Steroids 68, 55–64 (2003)

    Article  CAS  Google Scholar 

  18. Al-Soufi, W., Cabrer, P.R., Jover, A., Budal, R.M., Tato, J.V.: Determination of second-order association constants by global analysis of H-1 and C-13 NMR chemical shifts. Application to the complexation of sodium fusidate and potassium helvolate by beta- and gamma-cyclodextrin. Steroids 68, 43–53 (2003)

    Article  CAS  Google Scholar 

  19. Larsen, K.L., Aachmann, F.L., Wimmer, R., Stella, V.J., Madsen Kjølner, U.: Phase solubility and structure of the inclusion complexes of prednisolone and 6 alpha-methyl prednisolone with various cyclodextrins. J. Pharm. Sci. 94, 507–515 (2005)

    Article  CAS  Google Scholar 

  20. Bartels, C., Xia, T.-H., Billeter, M., Günter, P., Wüthrich, K.: The program XEASY for computer-supported NMR spectral-analysis of biological macromolecules. J. Biomol. NMR 5, 1–10 (1995)

    Article  Google Scholar 

  21. Larsen, K.L., Zimmerman, W.: Analysis and characterisation of cyclodextrins and their complexes by affinity capillary electrophoresis. J. Chromatogr. A. 836, 3–14 (1999)

    Article  CAS  Google Scholar 

  22. Lee, Y., Lin, I.: Capillary electrophoretic analysis of cyclodextrins and determination of formation constants for inclusion complexes. Electrophoresis 17, 333–340 (1996)

    Article  CAS  Google Scholar 

  23. Larsen, K.L., Endo, T., Ueda, H., Zimmerman, W.: Inclusion complex formation constants of alpha-, beta-, gamma-, delta-, epsilon-, zeta-, eta-, and theta-cyclodextrins determined with capillary zone electrophoresis. Carbohydr. Res. 309, 153–159 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Lambertsen Larsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, K.L., Andersen, S.B., Mørkbak, A.L. et al. Inclusion complexes of fusidic acid and three structurally related compounds with cyclodextrins. J Incl Phenom Macrocycl Chem 57, 185–190 (2007). https://doi.org/10.1007/s10847-006-9198-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-006-9198-7

Keywords

Navigation