Skip to main content
Log in

Ionic liquids and cyclodextrin inclusion complexes: limitation of the affinity capillary electrophoresis technique

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The state of the art of inclusion complex formation between cyclodextrins and ionic liquids is reported. Mechanisms, stoichiometries, and binding constants are summarized and classified by anion. We investigated the supramolecular interactions between the β-cyclodextrin cavity and six ionic liquids based on 1-dodecyl-3-methylimidazolium by affinity capillary electrophoresis and compared the results with those obtained by isothermal titration calorimetry. We show that the presence of basic or acidic buffers leads to a metathesis reaction, underlining the limitation of the affinity capillary electrophoresis technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D’Souza VT, Lipkowitz KB. Cyclodextrins: introduction. Chem Rev. 1998;98:1741–2.

    Article  Google Scholar 

  2. Kenneth AC. Binding constants: the measurement of molecular complex stability. 1st ed. Oxford: Wiley-Interscience; 1987.

    Google Scholar 

  3. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001;3:156–64.

    Article  CAS  Google Scholar 

  4. Hallett JP, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis 2. Chem Rev. 2011;111:3508–76.

    Article  CAS  Google Scholar 

  5. Anderson JL, Ding J, Welton T, Amstrong DW. Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc. 2002;124:14247–54.

    Article  CAS  Google Scholar 

  6. Rogalski M, Modaressi A, Magri P, et al. Physico-chemical properties and phase behavior of the ionic liquid-β-cyclodextrin complexes. Int J Mol Sci. 2013;14:16638–55.

    Article  Google Scholar 

  7. Mahlambi MM, Malefetse TJ, Mamba BB, Krause RWM. Polymerization of cyclodextrin-ionic liquid complexes for the removal of organic and inorganic contaminants from water. In: Korkorin A, editor. Ionic liquids: applications and perspectives. Rijeka: InTech; 2011. p. 115–51.

    Google Scholar 

  8. Duri S, Tran CD. Supramolecular composite materials from cellulose, chitosan, and cyclodextrin: facile preparation and their selective inclusion complex formation with endocrine disruptors. Langmuir. 2013;29:5037–49.

    Article  CAS  Google Scholar 

  9. Raoov M, Mohamad S, Abas MR. Synthesis and characterization of β-cyclodextrin functionalized ionic liquid polymer as a macroporous material for the removal of phenols and arsenic (V). Int J Mol Sci. 2014;15:100–19.

    Article  Google Scholar 

  10. Amajjahe S, Munteanu M, Ritter H. Switching the solubility of PMMA bearing attached cyclodextrin-moieties by supramolecular interactions with ionic liquids. Macromol Rapid Commun. 2009;30:904–8.

    Article  CAS  Google Scholar 

  11. Leclercq L, Lacour M, Sanon SH, Schmitzer AR. Thermoregulated microemulsions by cyclodextrin sequestration: a new approach to efficient catalyst recovery. Chem Eur J. 2009;15:6327–31.

    Article  CAS  Google Scholar 

  12. Li S, Xing P, Hou Y, Yang J, Yang X, Hao BA. Formation of a sheet-like hydrogel from vesicles via precipitates based on an ionic liquid-based surfactant and β-cyclodextrin. J Mol Liq. 2013;188:74–80.

    Article  CAS  Google Scholar 

  13. Zhang J, Shen X. Temperature-induced reversible transition between vesicle and supramolecular hydrogel in the aqueous ionic liquid-β-cyclodextrin system. J Phys Chem B. 2013;117:1451–7.

    Article  CAS  Google Scholar 

  14. Jiangna G, Chao Y, Mingyu G, Lei W, Feng Y. Flexible and voltage-switchable polymer velcro constructed using host-guest recognition between poly(ionic liquid) strips. Chem Sci. 2014;5:3261–6.

    Article  Google Scholar 

  15. Zhou Z, Li X, Chen X, Hao X. Synthesis of ionic liquids functionalized β-cyclodextrin-bonded chiral stationary phases and their applications in high-performance liquid chromatography. Anal Chim Acta. 2010;678:208–14.

    Article  CAS  Google Scholar 

  16. Huang K, Zhang X, Amstrong DW. Ionic cyclodextrins in ionic liquid matrices as chiral stationary phases for gas chromatography. J Chromatogr A. 2010;1217:5261–73.

    Article  CAS  Google Scholar 

  17. Stalcup AM, Cabovska B. Ionic liquids in chromatography and capillary electrophoresis. J Liq Chromatogr. 2004;27:1443–59.

    Article  CAS  Google Scholar 

  18. Mendes A, Branco LC, Morais C, Simplicio AL. Electroosmotic flow modulation in capillary electrophoresis by organic cations from ionic liquids. Electrophoresis. 2012;33:1182–90.

    Article  CAS  Google Scholar 

  19. Tran CD, De Paoli Lacerda S. Near-infrared spectroscopic investigation of inclusion complex formation of cyclodextrins in room-temperature ionic liquid. J Incl Phenom Macrocycl Chem. 2002;44:185–90.

    Article  CAS  Google Scholar 

  20. Gao YA, Li ZH, Du JM, et al. Preparation and characterization of inclusion complexes of β-cyclodextrin with ionic liquid. Chem Eur J. 2005;11:5875–80.

    Article  CAS  Google Scholar 

  21. He Y, Shen X. Interaction between β-cyclodextrin and ionic liquids in aqueous solutions investigated by a competitive method using a substituted 3H-indole probe. J Photochem Photobiol A. 2008;197:253–9.

    Article  CAS  Google Scholar 

  22. Rak J, Ondo D, Tkadlecova M, Dohnal V. On the interaction of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate with β-cyclodextrin in aqueous solutions. Z Phys Chem. 2010;224:893–906.

    Article  CAS  Google Scholar 

  23. Zhang J, Shen X. Multiple equilibria interaction pattern between the ionic liquids CnmimPF6 and β-cyclodextrin in aqueous solutions. J Phys Chem B. 2011;115:11852–61.

    Article  CAS  Google Scholar 

  24. Li HG, Zhang Q, Liu M, Liu J, Sun DZ. Studies on interaction of ionic liquids with cyclodextrins in aqueous solution. Indian J Chem. 2010;49A:752–6.

    CAS  Google Scholar 

  25. Roy MN, Roy MC, Roy K. Investigation of an inclusion complex formed by ionic liquid and β-cyclodextrin through hydrophilic and hydrophobic interactions. RSC Adv. 2015;5:56717–23.

    Article  CAS  Google Scholar 

  26. Amajjahe S, Choi S, Munteanu M, Ritter H. Pseudopolyanions based on poly(NIPAAM-co-β-cyclodextrin methacrylate) and ionic liquids. Angew Chem Int Ed. 2008;47:3435–7.

    Article  CAS  Google Scholar 

  27. Hodyna D, Bardeau JF, Metelytsia L, et al. Efficient antimicrobial activity and reduced toxicity of 1-dodecyl-3-methylimidazolium tetrafluoroborate ionic liquid/β-cyclodextrin complex. Chem Eng J. 2016;284:1136–45.

    Article  CAS  Google Scholar 

  28. Gao Y, Zhao X, Dong B, Zheng L, Li N, Zhang S. Inclusion complexes of β-cyclodextrin with ionic liquid surfactants. J Phys Chem B. 2006;110:8576–81.

    Article  CAS  Google Scholar 

  29. Li N, Liu J, Zhao X, et al. Complex formation of ionic liquid surfactant and β-cyclodextrin. Colloids Surf A. 2007;292:196–201.

    Article  CAS  Google Scholar 

  30. He Y, Chen Q, Xu C, Zhang J, Shen X. Interaction between ionic liquids and β-cyclodextrin: a discussion of association pattern. J Phys Chem B. 2009;113:231–8.

    Article  CAS  Google Scholar 

  31. Zhang J, Shi J, Shen X. Further understanding of the multiple equilibria interaction pattern between ionic liquid and β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2014;79:319–27.

    Article  CAS  Google Scholar 

  32. Semino R, Rodríguez J. Molecular dynamics study of ionic liquids complexation within β-cyclodextrins. J Phys Chem B. 2015;119:4865–72.

    Article  CAS  Google Scholar 

  33. Funasaki N, Ishikawa S, Neya S. 1:1 and 1:2 complexes between long-chain surfactant and α-cyclodextrin studied by NMR. J Phys Chem B. 2004;108:9593–8.

    Article  CAS  Google Scholar 

  34. Ondo D, Tkadlecova M, Dohnal V, et al. Interaction of ionic liquids ions with natural cyclodextrins. J Phys Chem B. 2011;115:10285–97.

    Article  CAS  Google Scholar 

  35. Hayes R, Warr GG, Atkin R. Structure and nanostructure in ionic liquids. Chem Rev. 2015;115:6357–426.

    Article  CAS  Google Scholar 

  36. Lungwitz R, Spange S. A hydrogen bond accepting (HBA) scale for anions, including room temperature ionic liquids. New J Chem. 2008;32:392–4.

    Article  CAS  Google Scholar 

  37. Schou C, Heegaard NH. Recent applications of affinity interactions in capillary electrophoresis. Electrophoresis. 2006;27:44–59.

    Article  CAS  Google Scholar 

  38. Qi S, Cui S, Chen X, Hu Z. Rapid and sensitive determination of anthraquinones in Chinese herb using 1-butyl-3-methylimidazolium-based ionic liquid with β-cyclodextrin as modifier in capillary zone electrophoresis. J Chromatogr A. 2004;1059:191–8.

    Article  CAS  Google Scholar 

  39. Aupoix A, Pegot B, Vo-Thanh G. Synthesis of imidazolium and pyridinium-based ionic liquids and application of 1-alkyl-3-methylimidazolium salts as pre-catalysts for the benzoin condensation using solvent-free and microwave activation. Tetrahedron. 2010;66:1352–6.

    Article  CAS  Google Scholar 

  40. Wang M, Pan X, Xia S, Zhang C, Li W, Dai S. Regulating mesogenic properties of ionic liquid crystals by preparing binary or multi-component systems. J Mater Chem. 2012;22:2299–305.

    Article  CAS  Google Scholar 

  41. Rodriguez-Palmeiro I, Rodriguez-Escontrela I, Rodriguez O, Arce A, Soto A. Characterization and interfacial properties of the surfactant ionic liquid 1-dodecyl-3-methyl imidazolium acetate for enhanced oil recovery. RSC Adv. 2015;5:37392–8.

    Article  CAS  Google Scholar 

  42. Liu Y, Shamsi SA. Combined use of chiral ionic liquid surfactants and neutral cyclodextrins: evaluation of ionic liquid head groups for enantioseparation of neutral compounds in capillary electrophoresis. J Chromatogr A. 2014;1360:296–304.

    Article  CAS  Google Scholar 

  43. François Y, Varenne A, Sirieix-Plenet J, Gareil P. Determination of aqueous inclusion complexation constants and stoichiometry of alkyl(methyl)-methylimidazolium-based ionic liquid cations and neutral cyclodextrins by affinity capillary electrophoresis. J Sep Sci. 2007;30:751–60.

    Article  Google Scholar 

  44. Bertaut E, Landy D. Improving ITC studies of cyclodextrin inclusion compounds by global analysis of conventional and non-conventional experiments. Beilstein J Org Chem. 2014;10:2630–41.

    Article  Google Scholar 

  45. Connors KA. Measurement of cyclodextrin complex stability constants. Compr Supramol Chem. 1996;3:205–41.

    CAS  Google Scholar 

  46. Tanaka Y, Terabe S. Estimation of binding constants by capillary electrophoresis. J Chromatogr B. 2002;768:81–92.

    Article  CAS  Google Scholar 

  47. Parker KM, Stalcup AM. Affinity capillary electrophoresis and isothermal titration calorimetry for the determination of fatty acid binding with beta-cyclodextrin. J Chromatogr A. 2008;1204:171–82.

    Article  CAS  Google Scholar 

  48. Danel C, Duval C, Azaroual N, et al. Complexation of triptolide and its succinate derivative with cyclodextrins: affinity capillary electrophoresis, isothermal titration calorimetry and 1H NMR studies. J Chromatogr A. 2011;1218:8708–14.

    Article  CAS  Google Scholar 

  49. Favrelle A, Gouhier G, Guillen F, et al. Structure-binding effects: comparative binding of 2-anilino-6-naphthalenesulfonate by a series of alkyl- and hydroxyalkyl-substituted β-cyclodextrins. J Phys Chem B. 2015;119:12921–30.

    Article  CAS  Google Scholar 

  50. Lynen F, Borremans F, Sandra P. Practical evaluation of the influence of excessive sample concentration on the estimation of dissociation constants with affinity capillary electrophoresis. Electrophoresis. 2001;22:1974–8.

    Article  CAS  Google Scholar 

  51. Le Saux T, Varenne A, Gareil P. Peak shape modeling by Haarhoff-Van der Linde function for the determination of correct migration times: a new insight into affinity capillary electrophoresis. Electrophoresis. 2005;26:3094–104.

    Article  Google Scholar 

  52. Steinbock B, Vichaikul PP, Steinbock O. Nonlinear analysis of dynamic binding in affinity capillary electrophoresis demonstrated for inclusion complexes of β-cyclodextrin. J Chromatogr A. 2001–2002;943:139–46.

Download references

Acknowledgments

The authors thank Claudette Martin from Rouen University for the analysis of the ionic liquids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Géraldine Gouhier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 13.6 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mofaddel, N., Fourmentin, S., Guillen, F. et al. Ionic liquids and cyclodextrin inclusion complexes: limitation of the affinity capillary electrophoresis technique. Anal Bioanal Chem 408, 8211–8220 (2016). https://doi.org/10.1007/s00216-016-9931-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9931-z

Keywords

Navigation