Skip to main content
Log in

Human-in-the-Loop Control Using Euler Angles

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we proposed a Human-in-the-loop (HITL) control based on the Euler angles solution of the robot end-effector. When humans are in the control loop, we can linearize the Euler angles such that they have direct relation with the joint angles and they are also decoupled. So the Jacobian matrix and the inverse kinematics are not needed. We simplify the admittance control using the Euler angles. The stability of those controllers is proven. The experiments, with a two-degree-of-freedom (2-DOF) pan and tilt robot and a four-degree-of-freedom exoskeleton, show that our Euler angles based controllers are simple and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, W., Rosen, J.: A novel linear PID controller for an upper limb exoskeleton. In: 49th IEEE Conference on Decision and Control, pp. 3548–3553 (2010)

  2. Yu, W., Rosen, J., Li, X.: PID admittance control for an upper limb exoskeleton. In: American Control Conference, pp. 1124–1129 (2011)

  3. Perrusquia, A., Yu, W., Soria, A., Lozano, R.: Stable admittance control without inverse kinematics. In: 20th IFAC World Congress (IFAC2017), Toulose, France (2017)

  4. Yu, W., Carmona, R., Li, X.: Neural PID admittance control of a robot. In: American Control Conference, pp. 4963–4968 (2013)

  5. Irawan, A., Moktadir, M., Yin Tan, Y.: PD-FLC with admittance control for hexapod robot’s leg positioning on seabed. IEEE American Control Conference (2015)

  6. Peng Tee, K., Yan, R., Li, H.: Adaptive admittance control of a robot manipulator under task space constraint. In: IEEE International Conference On Robotics And Automation, pp. 5181–5186 (2010)

  7. Hogan, N.: Impedance control: an approach to manipulation. Journal of Dynamic Systems, Measurement, and Control 107, 1–24 (1985)

    Article  Google Scholar 

  8. Hoon Kang, S., Jin, M., Hun Chang, P.: A solution to the accuracy/robustness dilemma in impedance control, In: IEEE/ ASME Transactions on Mechatronics, pp. 182–194 (2009)

  9. Ferreti, G., Magnani, G.A., Rocco, P.: Impedance control for elastic joints industrial manipulators. IEEE Trans. Robot. Autom. 20(3), 488–498 (2004)

    Article  Google Scholar 

  10. Bonitz, R.G., Hsia, T.C.: Internal Force-Based Impedance Control for Cooperating Manipulators. IEEE Trans. Robot. Autom. 12(1), 78–89 (1996)

    Article  Google Scholar 

  11. Singh, S.K., Popa, D.O.: An analysis of some fundamental problems in adaptive control of force and impedance behavior: theory and experiments. IEEE Trans. Robot. Autom. 11(6), 912–921 (1995)

    Article  Google Scholar 

  12. Lu, W.-S., Meng, Q.H.: Impedance control with adaptation for robotic manipulators. IEEE Trans. Robot. Autom. 7(3), 408–415 (1991)

    Article  Google Scholar 

  13. Abdossalami, A., Sirouspour, S.: Adaptive control of haptic interaction with impedance and admittance type virtual environments. In: Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, pp. 145–152 (2008)

  14. Dohring, M., Newman, W.: The passivity of natural admittance control implementations. In: IEEE International Conference on Robotics and Automation, pp. 371–376 (2003)

  15. Chih, M., Huang, A.C.: Adaptive impedance control of robot manipulators based on function approximation technique. Robotica, Cambridge University Press 22, 395–403 (2004)

    Google Scholar 

  16. Kelly, R., Carelli, R., Amestegui, M., Ortega, R.: On adaptive impedance control of robots manipulators. IEEE Robot. Autom. 1, 572–577 (1989)

    Google Scholar 

  17. Mut, V., Nasisi, O., Carelli, R., Kuchen, B.: Tracking adaptive impedance robot control with visual feedback, In: IEEE International Conference on Robotics and Automation, pp. 2002–2007 (1998)

  18. Tufail, M., de Silva, C.W.: Impedance control schemes for bilateral teleoperation. In: International Conference on Computer Science and Education, pp. 44–49 (2014)

  19. Ficuciello, F., Villani, L., Siciliano, B.: Variable impedance control of redundant manipulators for intuitive human-robot physical interaction. IEEE Trans. Robot. 31(4), 850–863 (2015)

    Article  Google Scholar 

  20. Manan Khan, A., Yun, D.W., Ali, M.A., Han, J., Shin, K., Han, C.: Adaptive impedance control for upper limb assist exoskeleton. In: IEEE International Conference on Robotics and Automation, pp. 4359–4366 (2015)

  21. Mohammadi, H., Richter, H.: Robust tracking/impedance control: application to prosthetics. In: American Control Conference, pp. 2673–2678 (2015)

  22. Garrido, J.: Aprendizaje por demostración en el espacio articular para el seguimiento de trayectorias aplicado en un exoesqueleto de 4 grados de libertad, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México (2015)

  23. Ramírez, D., Arturo, O., Parra Vega, V., Díaz Montiel, M.G., Pozas Cardenas, M.J., Hernández Gómez, R.A.: Cartesian sliding PD control of robots manipulators for tracking in finite time: Theory and experiments. DAAAM International Scientific Book 23, 257–272 (2008)

    Google Scholar 

  24. Kazerooni, H., Herm, M.-G.: The Dynamics and Control of a Haptic Interface Device. IEEE Trans. Robot. Autom. 10(4), 453–464 (1994)

    Article  Google Scholar 

  25. Kiguchi, K., Tanaka, T., Fukuda, T.: Nuero-fuzzy control of a robotic exoskeleton with EMG signals. IEEE Trans. Fuzzy Syst. 12(4), 481–490 (2004)

    Article  Google Scholar 

  26. Kelly, R., Santibáñez, V.: Control de Movimiento de Robots Manipuladores, Pearson Prentice Hall (2003)

  27. Khalil, H.: Nonlinear systems, Prentice Hall (2002)

  28. Dimeas, F., Aspragathos, N.: Online stability in human-robot cooperations with admittance control. IEEE Trans. Haptic 9(2), 267–278 (2016)

    Article  Google Scholar 

  29. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot dynamics and control (2004)

  30. Onyango, S.O.: Behaviour modelling and system control with human in the loop. Diss. Université Paris-Est (2017)

  31. Ranatunga, I., Lewis, F.L., Popa, D.O., Tousif, S.M.: Adaptive admittance control for human–robot interaction using model reference design and adaptive inverse filtering. IEEE transactions on control systems technology, 25(1), 278–285 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrusquía, A., Yu, W. Human-in-the-Loop Control Using Euler Angles. J Intell Robot Syst 97, 271–285 (2020). https://doi.org/10.1007/s10846-019-01058-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01058-2

Keywords

Navigation