Skip to main content
Log in

Non-decoupled Locomotion and Manipulation Planning for Low-Dimensional Systems

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

We demonstrate the possibility of solving planning problems by interleaving locomotion and manipulation in a non-decoupled way. We choose three low-dimensional minimalistic robotic systems and use them to illustrate our paradigm: a basic one-legged locomotor, a two-link manipulator with a manipulated object, and a simultaneous locomotion-and-manipulation system. Using existing motion planning and control methods initially designed for either locomotion or manipulation tasks, we see how they apply to both our locomotion-only and manipulation-only systems through parallel derivations, and extend them to the simultaneous locomotion-and-manipulation system. Motion planning is solved for these three systems using two different methods: (i) a geometric path-planning-based one, and (ii) a kinematic control-theoretic-based one. Motion control is then derived by dynamically realizing the geometric paths or kinematic trajectories under the Couloumb friction model using torques as control inputs. All three methods apply successfully to all three systems, showing that the non-decoupled planning is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alami, R., Laumond, J.P., Siméon, T.: Two manipulation planning algorithms. In: Proceedings of the Workshop on Algorithmic Foundations of Robotics, pp. 109–125 (1995)

  2. Ames, A.D., Powell, M.: Towards the unification of locomotion and manipulation through control Lyapunov functions and quadratic programs. In: Control of Cyber-Physical Systems, pp. 219–240. Springer (2013)

  3. Arai, T.: Robots with integrated locomotion and manipulation and their future. In: Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems’ 96, IROS 96, vol. 2, pp. 541–545. IEEE (1996)

  4. Avnaim, F., Boissonnat, J.D.: Polygon placement under translation and rotation. In: Symposium on Theoretical Aspects of Computer Science, pp. 322–333 (1988)

  5. Ben-Tzvi, P.: Hybrid Mobile Robot Systems: Interchanging Locomotion and Manipulation. Ph.D. thesis, University of Toronto (2008)

  6. Ben-Tzvi, P., Goldenberg, A., Zu, J.: Design and analysis of a hybrid mobile robot mechanism with compounded locomotion and manipulation capability. Transactions of the ASME Journal of Mechanical Design 130, 1–13 (2008)

    Article  Google Scholar 

  7. Bobrow, J., Dubowsky, S., Gibson, J.: Time-optimal control of robotic manipulators along specified paths. Int. J. Robot. Res. 4(3), 3–17 (1985)

    Article  Google Scholar 

  8. Bouyarmane, K., Kheddar, A.: Static multi-contact inverse problem for multiple humanoid robots and manipulated objects. In: IEEE-RAS International Conference on Humanoid Robots, pp. 8–13 (2010)

  9. Bouyarmane, K., Kheddar, A.: Fem-based static posture planning for a humanoid robot on deformable contact support. In: IEEE-RAS International Conference on Humanoid Robots, pp. 487–492 (2011)

  10. Bouyarmane, K., Kheddar, A.: Humanoid robot locomotion and manipulation step planning. Adv. Robot. 26(10), 1099–1126 (2012)

    Article  Google Scholar 

  11. Bouyarmane, K., Kheddar, A.: On the dynamics modeling of free-floating-base articulated mechanisms and applications to humanoid whole-body dynamics and control. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 36–42 (2012)

  12. Bouyarmane, K., Vaillant, J., Morimoto, J.: Low-dimensional user control of autonomously planned whole-body humanoid locomotion motion towards brain-computer interface applications, pp. 740–748. https://doi.org/10.1142/9789814525534_0092

  13. Bouyarmane, K., Vaillant, J., Sugimoto, N., Keith, F., Furukawa, J.i., Morimoto, J.: Brain-machine interfacing control of whole-body humanoid motion. Front. Syst. Neurosci. 8, 138 (2014). https://doi.org/10.3389/fnsys.2014.00138

  14. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Springer, New York (2000)

    MATH  Google Scholar 

  15. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory Algorithms, and Implementations. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  16. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Prentice Hall, Englewood Cliffs (2004)

  17. Dang, D., Lamiraux, F., Laumond, J.P.: A framework for manipulation and locomotion with realtime footstep replanning. In: 2011 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 676–681. IEEE (2011)

  18. Escande, A., Kheddar, A., Miossec, S.: Planning support contact-points for humanoid robots and experiments on HRP-2. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2974–2979. Beijing, China (2006)

  19. Escande, A., Kheddar, A., Miossec, S.: Planning contact points for humanoid robots. Robot. Auton. Syst. 61(5), 428–442 (2013). https://doi.org/10.1016/j.robot.2013.01.008

  20. Esteves, C., Arechavelata, G., Pettré, J., Laumond, J.P.: Animation planning for virtual characters cooperation. ACM Trans. Graph. 25(2), 319–339 (2006)

    Article  Google Scholar 

  21. Goodwine, B., Burdick, J.: Controllability of kinematic control systems on stratified configuration spaces. IEEE Trans. Autom. Control 46(3), 358–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goodwine, B., Burdick, J.: Motion planning for kinematic stratified systems with application to quasi-static legged locomotion and finger gaiting. IEEE Trans. Robot. Autom. 18(2), 209–222 (2002)

    Article  MATH  Google Scholar 

  23. Hauser, K., Bretl, T., Latombe, J.C., Harada, K., Wilcox, B.: Motion planning for legged robots on varied terrain. Int. J. Robot. Res. 27(11–12), 1325–1349 (2008)

    Article  Google Scholar 

  24. Hauser, K., Ng-Thow-Hing, V., Gonzalez-Baños, H.: Multi-modal motion planning for a humanoid robot manipulation task. In: Kaneko, M., Nakamura, Y. (eds.) International Symposium Robotics Research, pp. 307-317. Springer, Berlin, Heidelberg (2011)

  25. Hopcroft, J., Wilfong, G.: Motion of objects in contact. Int. J. Robot. Res. 4(4), 32–46 (1986)

    Article  Google Scholar 

  26. Isham, C.: Modern Differential Geometry for Physicists, World Scientific Lecture Notes in Physics, vol. 61, 2nd edn. World Scientific (1999)

  27. Kajita, S., Espiau, B.: Springer Handbook of Robotics, chap. Legged Robots. Springer, New York (2008)

    Google Scholar 

  28. Kanoun, O., Laumond, J.: Optimizing the stepping of a humanoid robot for a sequence of tasks. In: IEEE-RAS International Conference on Humanoid Robots (2010)

  29. Kanoun, O., Laumond, J., Yoshida, E.: Planning foot placements for a humanoid robot: a problem of inverse kinematics. Int. J. Robot. Res. 30(4), 476–485 (2011)

    Article  Google Scholar 

  30. Kemp, C.C., Fitzpatrick, P., Hirukawa, H., Yokoi, K., Harada, K., Matsumoto, Y.: Springer Handbook of Robotics, chap. Humanoids. Springer, New York (2008)

    Google Scholar 

  31. Koyachi, N., Arai, T., Adachi, H., Itoh, Y.: Integrated limb mechanism of manipulation and locomotion for dismantling robot-basic concept for control and mechanism. In: Proceedings of the 1993 IEEE/Tsukuba International Workshop on Advanced Robotics, 1993. Can Robots Contribute to Preventing Environmental Deterioration?, pp. 81–84. IEEE (1993)

  32. Lafferriere, G., Sussmann, H.J.: A differential geometric approach to motion planning. In: Nonholonomic Motion Planning, pp. 235–270. Kluwer (1993)

  33. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)

    Book  MATH  Google Scholar 

  34. Laumond, J.P.: Robot Motion Planning and Control. Springer, New York (1998)

    Book  Google Scholar 

  35. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  36. M’closkey, R.T., Murray, R.M.: Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Autom. Control 42(5), 614–628 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Moulard, T., Lamiraux, F., Bouyarmane, K., Yoshida, E.: Roboptim: an optimization framework for robotics. In: Robomec, p. 4 (2013)

  38. Murray, R.M., Li, Z., Sastry, S.S.: A mathematical introduction to robotic manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  39. Saab, L., Soueres, P., Fourquet, J.: Coupling manipulation and locomotion tasks for a humanoid robot. In: International Conference on Advances in Computational Tools for Engineering Applications, 2009. ACTEA’09, pp. 84–89. IEEE (2009)

  40. Saut, J.P., Sahbani, A., El-Khoury, S., Perdereau, V.: Dexterous manipulation planning using probabilistic roadmaps in continuous grasp subspaces. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2907–2912. San Diego, CA, USA (2007)

  41. Siméon, T., Laumond, J.P., Cortés, J., Sahbani, A.: Manipulation planning with probabilistic roadmaps. Int. J. Robot. Res. 23(7–8), 729–746 (2004)

    Article  Google Scholar 

  42. Srinivasa, S.S., Erdmann, M.A., Mason, M.T.: Using projected dynamics to plan dynamic contact manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3618–3623. Edmonton, Alta., Canada (2005)

  43. Vaillant, J., Bouyarmane, K., Kheddar, A.: Multi-character physical and behavioral interactions controller. IEEE Trans. Vis. Comput. Graph. 23(6), 1650–1662 (2017)

    Article  Google Scholar 

  44. Vaillant, J., Kheddar, A., Audren, H., Keith, F., Brossette, S., Escande, A., Bouyarmane, K., Kaneko, K., Morisawa, M., Gergondet, P., Yoshida, E., Kajita, S., Kanehiro, F.: Multi-contact vertical ladder climbing with an HRP-2 humanoid. Auton. Robot. 40(3), 561–580 (2016). https://doi.org/10.1007/s10514-016-9546-4

    Article  Google Scholar 

  45. Xu, J., Koo, J., Li, Z.: Finger gaits planning for multifingered manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2932–2937. San Diego, CA, USA (2007)

  46. Yamamoto, Y., Yun, X.: Coordinating locomotion and manipulation of a mobile manipulator. In: Proceedings of the 31st IEEE Conference on Decision and Control, 1992, pp. 2643–2648. IEEE (1992)

  47. Yamane, K., Kuffner, J., Hodgins, J.K.: Synthesizing animations of human manipulation tasks. ACM Transactions on Graphics (SIGGRAPH) 23(3), 532–539 (2004)

    Article  Google Scholar 

  48. Yashima, M., Shiina, Y., Yamaguchi, H.: Randomized manipulation planning for a multi-fingered hand by switching contact modes. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 2689–2694 (2003)

  49. Yoshida, E., Esteves, C., Kanoun, O., Poirier, M., Mallet, A., Laumond, J.P., Yokoi, K.: Planning whole-body humanoid locomotion, reaching, and manipulation. In: Motion Planning for Humanoid Robots, pp. 99–128. Springer (2010)

Download references

Acknowledgments

This work was partially supported by the H2020 COMANOID EU project www.comanoid.eu and the by the JSPS Grant-in-Aid for Scientific Research (B) Number 16H02886 (“Cutting-Edge multi-contact behaviors”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Bouyarmane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouyarmane, K., Kheddar, A. Non-decoupled Locomotion and Manipulation Planning for Low-Dimensional Systems. J Intell Robot Syst 91, 377–401 (2018). https://doi.org/10.1007/s10846-017-0692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0692-5

Keywords

Navigation