Skip to main content
Log in

More Robust Features for Adaptive Visual Navigation of UAVs in Mixed Environments

A Novel Localisation Framework

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we present an autonomous visual navigation system that determines the location of the unmanned aerial vehicle (UAV) in GPS-denied environment by detecting semantic features (roads centrelines, intersections, outlines of forest and river) in aerial imagery and matching them to a pre-built dataset. This work is centred around testing the capability of a road centreline modelling and matching algorithm to localise accurately. Alongside, dynamic feature modelling and minimalistic description to optimise data association are proposed. We test three novel datasets with satellite imagery covering the same rural area with significant seasonal and lighting variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  2. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, pp. II–II. IEEE (2004)

  3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: European Conference on Computer Vision. Graz, Austria May, pp 7–13 (2006)

  4. Cesetti, A., Frontoni, E., Mancini, A., Ascani, A., Zingaretti, P., Longhi, S.: A visual global positioning system for unmanned aerial vehicles used in photogrammetric applications. J. Intell. Robot. Syst. 61 (1–4), 157–168 (2011)

    Article  Google Scholar 

  5. Masselli, A., Hanten, R., Zell, A.: Localization of unmanned aerial vehicles using terrain classification from aerial images. In: Intelligent Autonomous Systems 13, pp. 831–842. Springer International Publishing (2016)

  6. Wahed, M., El-tawel, G.S., El-karim, A.G.: Automatic image registration technique of remote sensing images. Int. J. Adv. Comput. Sci. Appl. 4(2),177–187 (2013)

  7. Zhang, Y., Xiong, J., Hao, L.: Photogrammetric processing of low-altitude images acquired by unpiloted aerial vehicles. Photogramm. Rec. 26(134), 190–211 (2011)

    Article  Google Scholar 

  8. Castillo-Carrion, S., Guerrero-Ginel, J.E.: SIFT optimization and automation for matching images from multiple temporal sources. Int. J. Appl. Earth Obs. Geoinf. 57, 113–122 (2017)

    Article  Google Scholar 

  9. Sirmacek, B., Unsalan, C.: Urban-area and building detection using SIFT keypoints and graph theory. IEEE Trans. Geosci. Remote Sens. 47(4), 1156–1167 (2009)

    Article  Google Scholar 

  10. Turner, D., Lucieer, A., Watson, C.: An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sens. 4(5), 1392–1410 (2012)

    Article  Google Scholar 

  11. Lingua, A., Marenchino, D., Nex, F.: Performance analysis of the SIFT operator for automatic feature extraction and matching in photogrammetric applications. Sensors 9(5), 3745–3766 (2009)

    Article  Google Scholar 

  12. Irani, M., Anandan, P.: About direct methods. In: International Workshop on Vision Algorithms, pp. 267–277. Springer, Berlin Heidelberg (1999)

  13. Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry using a direct EKF-based approach. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 298–304. IEEE (2015)

  14. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22. IEEE (2014)

  15. Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Monocular vision based SLAM for mobile robots. In: 18th International Conference on Pattern Recognition, 2006. ICPR 2006, vol. 3, pp. 1027–1031. IEEE (2006)

  16. Lemaire, T., Berger, C., Jung, I.K., Lacroix, S.: Vision-based slam: stereo and monocular approaches. Int. J. Comput. Vis. 74(3), 343 (2007)

    Article  Google Scholar 

  17. Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)

    Article  Google Scholar 

  18. Conte, G., Doherty, P.: An integrated UAV navigation system based on aerial image matching. In: Aerospace Conference, 2008 IEEE, pp. 1–10. IEEE (2008)

  19. Liu, X., Wang, H., Fu, D., Yu, Q., Guo, P., Lei, Z., Shang, Y.: An area-based position and attitude estimation for unmanned aerial vehicle navigation. Sci. China Technol. Sci. 58(5), 916–926 (2015)

    Article  Google Scholar 

  20. Schneider, J., Eling, C., Klingbeil, L., Kuhlmann, H., Förstner, W., Stachniss, C.: Fast and effective online pose estimation and mapping for UAVs. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4784–4791. IEEE (2016)

  21. Erhard, S., Wenzel, K.E., Zell, A.: Flyphone: visual self-localisation using a mobile phone as onboard image processor on a quadrocopter. J. Intell. Robot. Syst. 57(1), 451–465 (2010)

    Article  Google Scholar 

  22. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  23. Wang, W., Yang, N., Zhang, Y., Wang, F., Cao, T., Eklund, P.: A review of road extraction from remote sensing images. Journal of Traffic and Transportation Engineering (English Edition) 3(3), 271–282 (2016)

    Article  Google Scholar 

  24. Volkova, A., Gibbens, P.W.: A comparative study of road extraction techniques from aerial imagery-a navigational perspective. In: Asia-Pacific International Symposium on Aerospace Technology (APISAT 2015), p. 692. Engineers Australia (2015)

  25. Mena, J.B.: State of the art on automatic road extraction for GIS update: a novel classification. Pattern Recogn. Lett. 24(16), 3037–3058 (2003)

    Article  Google Scholar 

  26. Sirmacek, B., Unsalan, C.: Urban-area and building detection using SIFT keypoints and graph theory. IEEE Trans. Geosci. Remote Sens. 47(4), 1156–1167 (2009)

    Article  Google Scholar 

  27. Hinz, S.: Automatic road extraction in urban scenes-and beyond. Int. Arch. Photogramm. Remote. Sens. 35 (PART B3), 349–355 (2004)

    Google Scholar 

  28. Ziems, M., Gerke, M., Heipke, C.: Automatic road extraction from remote sensing imagery incorporating prior information and colour segmentation. IntArchPhRS (36), PIA, 7, pp. 141–147 (2007)

  29. Mnih, V., Hinton, G.: Learning to detect roads in high-resolution aerial images. Comput. Vis. - ECCV 2010, 210–223 (2010)

    Google Scholar 

  30. Costea, D., Leordeanu, M.: Aerial image geolocalization from recognition and matching of roads and intersections (2016)

  31. Poullis, C., You, S.: Delineation and geometric modeling of road networks. ISPRS J. Photogramm. Remote. Sens. 65(2), 165–181 (2010)

    Article  Google Scholar 

  32. LLi, Y., Briggs, R.: Automatic extraction of roads from high resolution aerial and satellite images with heavy noise. World Acad. Sci. Eng. Technol. 54, 416–422 (2009)

    Google Scholar 

  33. Volkova, A., Gibbens, P.W.: Satellite Imagery Assisted Road-based Visual Navigation System. ISPRS Annals of Photogrammetry. Remote. Sens. Spat. Inf. Sci. 3(1), 209–217 (2016)

  34. Saito, S., Aoki, Y.: Building and road detection from large aerial imagery. In: SPIE/IS&T Electronic Imaging, pp. 94050K-94050K. International Society for Optics and Photonics (2015)

  35. Ok, A.O.: Automated extraction of buildings and roads in a graph partitioning framework. ISPRS Annals of Photogrammetry. Remote. Sens. Spat. Inf. Sci. 1(3), 79–84 (2013)

    Google Scholar 

  36. Song, M., Civco, D.: Road extraction using SVM and image segmentation. Photogramm. Eng. Remote. Sens. 70(12), 1365–1371 (2004)

    Article  Google Scholar 

  37. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

  38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)

  39. Steger, C., Glock, C., Eckstein, W., Mayer, H., Radig, B.: Model-based road extraction from images. In: Automatic Extraction of Man-Made Objects from Aerial and Space Images, pp. 275-284. Birkhäuser Basel (1995)

  40. Gamba, P., Dell’Acqua, F., Lisini, G.: Improving urban road extraction in high-resolution images exploiting directional filtering, perceptual grouping, and simple topological concepts. IEEE Geosci. Remote Sens. Lett. 3(3), 387–391 (2006)

    Article  Google Scholar 

  41. Montoya-Zegarra, J.A., Wegner, J.D., Ladicky, Ľ., Schindler, K.: Mind the gap: modeling local and global context in (road) networks. In: German Conference on Pattern Recognition, pp. 212-223. Springer International Publishing (2014)

  42. Grote, A., Heipke, C., Rottensteiner, F.: Road network extraction in suburban areas. Photogramm. Rec. 27(137), 8–28 (2012)

    Article  Google Scholar 

  43. Miao, Z., Shi, W., Zhang, H., Wang, X.: Road centerline extraction from high-resolution imagery based on shape features and multivariate adaptive regression splines. IEEE Geosci. Remote Sens. Lett. 10(3), 583–587 (2013)

    Article  Google Scholar 

  44. Dumble, S.J., Gibbens, P.W.: Airborne vision-aided navigation using road intersection features. J. Intell. Robot. Syst. 78(2), 185 (2015)

    Article  Google Scholar 

  45. Dumble, S.: Airborne Vision-Based Attitude Estimation and Localisation. Doctoral dissertation, University of Sydney) (2013)

  46. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using MATLAB, Pearson-Prentice-Hall (2004)

  47. Cheng, G., Zhu, F., Xiang, S., Wang, Y., Pan, C.: Accurate urban road centerline extraction from VHR imagery via multiscale segmentation and tensor voting. Neurocomputing 205, 407–420 (2016)

    Article  Google Scholar 

  48. Wessel, B., Wiedemann, C., Hellwich, O., Arndt, W.C.: Evaluation of automatic road extraction results from SAR imagery. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 34(4), 786–791 (2002)

    Google Scholar 

  49. Williams, D.G.: Edge Feature and Optical Flow Terrain Aid for GNSS-Denied Airborne Visual Navigation. Doctoral dissertation, University of Sydney (2016)

  50. Bindiganavle, K.: An Optimal Approach to Geometric Trimming of B-spline Surfaces. Doctoral dissertation, Virginia Tech (2000)

  51. GEODATA TOPO 250K Series 3 Topographic Data, Geoscience Australia. Release Date: 26 June 2006. http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_63999

Download references

Acknowledgements

The authors would like to thank David G. Williams and Dr. Steven J. Dumble for their advice and contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasiia Volkova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 33.9 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, A., Gibbens, P.W. More Robust Features for Adaptive Visual Navigation of UAVs in Mixed Environments. J Intell Robot Syst 90, 171–187 (2018). https://doi.org/10.1007/s10846-017-0650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0650-2

Keywords

Navigation