Skip to main content

Advertisement

Log in

Framework for Assessing Robotic Dexterity within Flexible Manufacturing

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

With growing demand for flexibility in manufacturing processes, interest in dexterous industrial robots is increasing. To facilitate benchmarking, and to assess the suitability of these robots for flexible manufacturing tasks, there is a need to develop new methods of capturing the relevant performance characteristics of industrial robots. This research aims to show that the Boothroyd-Dewhurst (B-D) Design-For-Assembly method, an established method for optimizing manufacturing processes, can be effectively adopted to form the basis of a comprehensive robotic dexterity assessment within flexible manufacturing. A comparative study is conducted which shows that the B-D classification tables offer the most comprehensive solution due to the range of operations and artifacts considered. Building on these tables, a framework is developed for determining the suitability of a robot system within flexible manufacturing operations. In a sample test-case scenario involving a pick-and-place operation, the framework is shown to produce an accurate estimate of robot performance that can be easily compared to human data. The framework establishes a link between manufacturing operations and robot performance metrics, which addresses the current difficulty in robot integration and highlights the framework’s potential for adoption within flexible manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ad-hoc Industrial Advisory Group (AIAG): Factories of the Future PPP Strategic Multi-Annual Roadmap. Tech. rep., European Commission. doi:10.2777/98640 (2010)

  2. Amazon Robotics: Amazon Picking Challenge. https://www.amazonrobotics.com/#/pickingchallenge Accessed on 12 May 2016 (2016)

  3. Backman, C., Gibson, S., Parsons, J.: Assessment of Hand Function: The Relationship between Pegboard Dexterity and Applied Dexterity. Can. J. Occup. Ther. 59(4), 208–213 (1992). doi:10.1177/000841749205900406

    Article  Google Scholar 

  4. Bélanger-Barrette, M.: Collaborative Robot Ebook, 6th edn. Robotiq. http://blog.robotiq.com/collaborative-robot-ebook (2015)

  5. Berger, M.A.M., Krul, A.J., Daanen, H.A.M.: Task specificity of finger dexterity tests. Appl. Ergon. 40(1), 145–147 (2009). doi:10.1016/j.apergo.2008.01.014

    Article  Google Scholar 

  6. Bernstein, N.A.: Dexterity and Its Development. In: Latash, M.L., Turvey, M.T. (eds.) On dexterity and its development, pp. 3–246, Lawrence Erlbaum Associates (1996). doi:10.1007/s13398-014-0173-7.2

  7. Bicchi, A.: Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity. IEEE Trans. Robot. Autom. 16(6), 652–662 (2000). doi:10.1109/70.897777

    Article  Google Scholar 

  8. Boothroyd, G., Dewhurst, P., Knight, W. A.: Product Design for Manual Assembly. In: Product Design for Manufacture and Assembly, second edn., chap. 3, pp. 73 – 133. CRC Press (2002)

  9. Bullock, I., Dollar, A.: Classifying human manipulation behavior. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–6 (2011). doi:10.1109/ICORR.2011.5975408

  10. Bullock, I., Ma, R., Dollar, A.: A hand-centric classification of human and robot dexterous manipulation. IEEE Trans. Haptic 6(2), 129–144 (2013). doi:10.1109/TOH.2012.53

    Article  Google Scholar 

  11. Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Benchmarking in manipulation research : The ycb object and model set and benchmarking protocols. CoRR (September), 184–185. doi:10.1109/ISMAR.2015.56 (2015)

  12. Collins Dexterity. In: Collins essential dictionary and thesaurus. Collins, London (2007)

  13. Cutkosky, M.: On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans. Robot. Autom. 5(3), 269–279 (1989). doi:10.1109/70.34763

    Article  Google Scholar 

  14. Dahiya, R., Valle, M.: Tactile Sensing for Robotic Applications. In: Rocha, J.G., Lanceros-Mendez, S. (eds.) Sensors, Focus on Tactile, Force and Stress Sensors, pp. 289–304. InTech (2008). doi:10.5772/6627

  15. DEXMART: Deliverable D6.2 - Report on the experimental results. Tech. rep., European Commission: Deliverable D6.2 - Report on the experimental results. Tech. rep., European Commission. http://www.dexmart.eu/fileadmin/dexmart/public_website/downloads/216239_D6-2_Report_on_experimental_results.pdf (2012)

  16. European Robotics Research Network (EURON): Benchmarking Initiative:Manipulation and Grasping. http://www.euron.org/activities/benchmarks/grasping (2008)

  17. Falco, J., Marvel, J., Messina, E.: Dexterous Manipulation for Manufacturing Applications Workshop. Tech. Rep. NISTIR 7940 National Institute of Standards and Technology (2013)

  18. Favi, C., Germani, M.: From product architecture to assembly sequence: a method to develop conceptual Design for Assembly based on interface analysis, pp. 209–214. Springer, Berlin, Heidelberg (2012). doi:10.1007/978-3-642-23860-4_34

    Google Scholar 

  19. Fleishman, E.A., Ellison, G.D.: A factor analysis of fine manipulative tests. J. Appl. Psychol. 46(2), 96–105 (1962). doi:10.1037/h0038499

    Article  Google Scholar 

  20. Garmonsway, G.N., Simpson, J.: Dexterity. In: The Penguin English dictionary, third edn. Allen Lane (1979)

  21. Gilliam, D., Leigh, S., Rukhin, A., Strawderman, W.: Pass-fail testing: Statistical requirements and interpretations. J. Res. Nat. Inst. Stand. Technol. 114(3), 195–199 (2009)

    Article  Google Scholar 

  22. Gove, P.B.: Dexterity. In: Webster’s Third New International Dictionary of the English Language, unabridged edn. Merriam-Webster Inc., Springfield, Massachusetts (1981)

  23. Graduate Institute of Rehabilitation Counselling, National Taiwan Normal University: Assessment tools / aids. http://www.girc.ntnu.edu.tw/page2/super_pages.php?ID=page201 (2015)

  24. Hollerbach, J.M.: Workshop on the Design and Control of Dextrous Hands. http://hdl.handle.net/1721.1/5688 (1982)

  25. Jeannerod, M.: The cognitive neuroscience of action Wiley-Blackwell (1997)

  26. Jeong, S., Takahashi, T.: Unified evaluation index of safety and dexterity of a human symbiotic manipulator. Robot. Syst. 27(5), 393–405 (2013). doi:10.1080/01691864.2013.763745

    Google Scholar 

  27. Klein, C., Blaho, B.: Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators. Int. J. Robot. Res. 6(2), 72–83 (1987). doi:10.1177/027836498700600206

    Article  Google Scholar 

  28. Kragten, G.: Underactuated hands: Fundamentals, performance analysis and design. Doctoral thesis, Delft University of Technology (2011)

  29. Kumar, A., Waldron, K.J.: The Workspaces of a Mechanical Manipulator. J. Mech. Des. Trans. ASME 103(3), 665–672 (1981)

    Article  Google Scholar 

  30. Kurtoglu, A.: Flexibility analysis of two assembly lines. Robot. Comput. Integr. Manuf. 20(3), 247–253 (2004). doi:10.1016/j.rcim.2003.10.011

    Article  Google Scholar 

  31. Kyberd, P.J., Murgia, A., Gasson, M., Tjerks, T., Metcalf, C.: Case studies to demonstrate the range of applications of the Southampton Hand Assessment Procedure. Br. J. Occup. Ther. 72(5), 212–218 (2009)

    Article  Google Scholar 

  32. Li, Z., Canny, J., Sastry, S.: On motion planning for dexterous manipulation. i. the problem formulation. In: Proceedings., 1989 IEEE International Conference on Robotics and Automation, 1989, vol. 2, pp. 775–780 (1989)

  33. Marcus, C.: 9 hole peg test, jebsen test of hand function, part 1. http://www.youtube.com/watch?v=DWz-Tvi8i-Q (2011)

  34. National Institute of Standards and Technology (NIST):Performance Assessment Framework for Robotic Systems. http://www.nist.gov/el/isd/ms/pafrs.cfm (2014)

  35. National Institute of Standards and Technology (NIST):Performance Metrics and Benchmarks to Advance the State of Robotic Grasping. http://www.nist.gov/el/isd/grasp.cfm (2014)

  36. National Science Foundation: National Robotics Initiative. https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503641 (2016)

  37. North Coast Medical Inc.: Hand and dexterity evaluation. https://www.ncmedical.com/categories/Hand--Dexterity_12839559.html https://www.ncmedical.com/categories/Hand-amp-Dexterity_66.html (2015)

  38. Oberle, C.: Modified wolf motor function test rating. http://www.youtube.com/watch?v=MsfrGauYHfc (2015)

  39. Okamura, A., Smaby, N., Cutkosky, M.: An overview of dexterous manipulation. In: Proceedings 2000 International Conf. Robotics and Automation 1, pp 255–262 (2000)

  40. Oxford University Press: Dexterity. In: Simpson, J.A., Weiner, E.S.C. (eds.) The Oxford English dictionary: Creel-duzepere, second edn., p. 1144. Clarendon Press (1989)

  41. Patel, S., Sobh, T.: Manipulator performance measures - a comprehensive literature survey, Journal of Intelligent and Robotic Systems: Theory and Applications pp. 1–24. doi:10.1007/s10846-014-0024-y (2014)

  42. Patterson Medical: Dexterity and sensory assessments. http://www.pattersonmedical.com/app.aspx?cmd=get_subsections&id=57784 (2015)

  43. Robotics Technology Consortium: A roadmap for US robotics: From internet to robotics - 2013 Edition. Tech. rep. https://robotics-vo.us/sites/default/files/2013 Robotics Roadmap-rs.pdf (2013)

  44. Rockin: RoCKIn@Work. http://rockinrobotchallenge.eu/work.php (2016)

  45. Saliba, M., Ellul, C.: Dexterous actuation. Mech. Mach. Theory 70, 45–61 (2013). doi:10.1016/j.mechmachtheory.2013.06.012

    Article  Google Scholar 

  46. Shneier, M., Messina, E., Schlenoff, C., Proctor, F., Kramer, T., Falco, J.: Measuring and Representing the Performance of Manufacturing Assembly Robots. Tech. Rep. NISTIR 8090 National Institute of Standards and Technology (2015)

  47. S.I. Instruments: Dexterity testing. https://www.youtube.com/watch?v=C7Ciu2b0ApQ (2013)

  48. Sturges, R.: A Quantification of Manual Dexterity: The Design for an Assembly Calculator. Robot. Comput. Integr. Manuf. 6(3), 237–252 (1989)

    Article  Google Scholar 

  49. Sturges, R.: A Quantification of Machine Dexterity Applied to an Assembly Task. Int. J. Robot. Res. 9(3), 49–62 (1990). doi:10.1177/027836499000900303

    Article  Google Scholar 

  50. Sturges, R., Wright, P.: A quantification of dexterity. Robot. Comput. Integr. Manuf. 6(1), 3–14 (1989). doi:10.1016/0736-5845(89)90080-X

    Article  Google Scholar 

  51. University of Alabama at Birmingham: Minnesota rate of manipulation two-hand turning and placing sub-test. https://www.youtube.com/watch?v=Y-xYTsrOc0A (2014)

  52. Wiesendanger, M.: Manual dexterity and the making of tools - an introduction from an evolutionary perspective. Exp. Brain Res. 128(1-2), 1–5 (1999). doi:10.1007/s002210050810

    Article  Google Scholar 

  53. Wright, P., Demmel, J., Nagurka, M.: The dexterity of manufacturing hands. Robotics Research, DSC 14, 157–163 (1989)

    Google Scholar 

  54. Yancosek, K.E., Howell, D.: A Narrative Review of Dexterity Assessments. J. Hand Ther. 22(3), 258–270 (2009). doi:10.1016/j.jht.2008.11.004

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Elena Messina and the Manipulation & Mobility Systems Group from the Intelligent Systems Division at the National Institute of Standards and Technology (NIST) for their support and collaboration during the development of this framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Culleton.

Additional information

This work was supported in full by the Irish Research Council under the ‘Embark Initiative’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Culleton, M., McGinn, C. & Kelly, K. Framework for Assessing Robotic Dexterity within Flexible Manufacturing. J Intell Robot Syst 87, 507–529 (2017). https://doi.org/10.1007/s10846-017-0505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0505-x

Keywords

Navigation