Skip to main content
Log in

Identification-Based Robust Motion Control of an AUV: Optimized by Particle Swarm Optimization Algorithm

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, the problem of identification-based robust motion control of an Autonomous Underwater Vehicle (AUV) is investigated. The unknown system parameters are estimated by using an adaptive parameter identifier, whose gains are optimized by Particle Swarm Optimization (PSO) algorithm. Removing the trial and error procedure and ensuring the convergence property together with fast response, are the benefits of such identification scheme. On the other hand, the system uncertainties, hydrodynamic parameter variations and external disturbances which affect the identified dynamical model, are also taken into account. The cross-coupling effects between subsystems are also considered as model uncertainties. Such uncertain model is then adopted in control synthesis procedure, in the steering and diving modes. In order to achieve the robust stability and performance, two robust control strategies are presented here to solve the motion control problem. First, an \(H_{\infty }\) mixed sensitivity problem is formulated in which the weighting functions are selected based on an optimization criterion, by using PSO algorithm. Controller order reduction is also applied to the resulting diving and steering controllers, using the Hankel norm approximation. Then, an Adaptive Sliding Mode Control (ASMC), whose sliding surface coefficients are optimized by PSO algorithm, is developed for the identified AUV model. Possessing the robustness properties with respect to system perturbations, the developed Sliding Mode Control (SMC) removes the complexity of uncertain model representation and the limitations on choosing the weighting functions in the \(H_{\infty }\) control problem. The upper bounds of perturbations are not required to be known in the proposed control schemes. The simulation results are also presented to demonstrate the performance of the proposed identification-based control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y., Streitlien, K., Bellingham, J.G., Baggeroer, A.B.: Acoustic doppler velocimeter flow measurement from an autonomous underwater vehicle with applications to deep ocean convection. J. Atmos. Ocean. Technol. 18(12), 2038–2051 (2001)

    Article  Google Scholar 

  2. Yuh, J.: Design and control of autonomous underwater robots: A survey. Auton. Robot. 8(1), 7–24 (2000)

    Article  Google Scholar 

  3. Zhang, Y., Baggeroer, A.B., Bellingham, J.G.: Spectral-feature classification of oceanographic processes using an autonomous underwater vehicle. IEEE J. Ocean. Eng. 26(4), 726–741 (2001)

    Article  Google Scholar 

  4. Kunz, C., Murphy, C., Camilli, R., Singh, H., Bailey, J., Eustice, R., Jakuba, M., Nakamura, K., Roman, C., Sato, T., Sohn, R.A., Willis, C.: Deep sea underwater robotic exploration in the ice-covered arctic ocean with AUVs. In: IEEE International Conference on Intelligent Robots and Systems, pp 3654–3660 (2008)

  5. Koofigar, H.R.: Adaptive control of underwater vehicles with unknown model parameters and unstructured uncertainties. In: Proceedings of SICE Annual Conference, pp 192–196 (2012)

  6. Ishaque, K., Abdullah, S.S., Ayob, S.M., Salam, Z.: Modeling and identification of an open-frame underwater vehicle: The yaw motion dynamics. J. Intell. Robot. Syst. 66(1–2), 37–56 (2012)

    Google Scholar 

  7. Joonyoung, K., Kihun, K., Choi, H.S., Seong, W., Lee, K.Y.: Estimation of hydrodynamic coefficients for an auv using nonlinear observers. IEEE J. Ocean. Eng. 27(4), 830–840 (2002)

    Article  Google Scholar 

  8. Juan Carlos, C.L., DecioCrisol, D.: AUV identification and robust control. In: Proceedings of the 18th International Federation of Automatic Control World Congress, vol. 18, pp 14735–14741 (2011)

  9. Smallwood, D.A., Whitcomb, L.L.: Preliminary experiments in the adaptive identification of dynamically positioned underwater robotic vehicles. In: IEEE International Conference on Intelligent Robots and Systems, vol. 4, pp 1803–1810 (2001)

  10. Ven, P.W.J.V.D, Johansen, T.A., Sørensen, A.J., Flanagan, C., Toal, D.: Neural network augmented identification of underwater vehicle models. Control. Eng. Pract. 15(6), 715–725 (2007)

    Article  Google Scholar 

  11. Bossley, K.M., Brown, M., Harris, C.J.: Neurofuzzy identification of an autonomous underwater vehicle. Int. J. Syst. Sci. 30(9), 901–913 (1999)

    Article  MATH  Google Scholar 

  12. Petrich, J., Stilwell, D.J.: Model simplification for AUV pitch-axis control design. J. Ocean. Eng. 37(7), 638–651 (2010)

    Article  Google Scholar 

  13. Ioannou, P.A., Sun, J.: Robust Adaptive Control. Dover Publications (1996)

  14. Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley (1994)

  15. Naeem, W., Sutton, R., Ahmad, S.M.: LQG/LTR control of an autonomous underwater vehicle using a hybrid guidance law. In: International Federation of Automatic Control, pp 31–36 (2003)

  16. Ishaque, K., Abdullah, S.S., Ayob, S.M., Salam, Z.: Single input fuzzy logic controller for unmanned underwater vehicle. J. Intell. Robot. Syst. 59(1), 87–100 (2010)

    Article  MATH  Google Scholar 

  17. Chin, C.S., Lau, M.W.S., Low, E., Seet, G.G.L.: Robust and decoupled control system of underwater robotic vehicle for stabilization and pipeline tracking. Proc. Inst. Mech. Eng. I: J. Syst. Control Eng. 222(4), 261–278 (2008)

    Google Scholar 

  18. Kuo, T.C., Huang, Y.J., Yu, H.H.: FRSMC design for the steering control and diving control of underwater vehicles. J. Mar. Sci. Technol. 17(1), 50–59 (2009)

    Google Scholar 

  19. Veres, S.M., Molnar, L., Lincoln, N.K., Morice, C.P.: Autonomous vehicle control systems- a review of decision making. Proc. Inst. Mech. Eng. I: J. Syst. Control Eng. 225(2), 155–195 (2011)

    Google Scholar 

  20. You, S.S., Lim, T.W., Jeong, S.K.: General path-following maneuvers for an underwater vehicle using robust control synthesis. Proc. Inst. Mech. Eng. I: J. Syst. Control Eng. 224(8), 960–969 (2010)

    Google Scholar 

  21. Zhou, K., Doyle, J.C.: Essentials of Robust Control. Prentice Hall (1998)

  22. Healey, A.J., Lienard, D.: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18(3), 327–339 (1993)

    Article  Google Scholar 

  23. Geranmehr, B., Nekoo, S.R.: Nonlinear suboptimal control of fully coupled non-affine six-DOF autonomous underwater vehicle using the state-dependent Riccati equation. J. Ocean Eng. 96, 248–257 (2015)

    Article  Google Scholar 

  24. Kennedy, J.: The particle swarm: Social adaptation of knowledge. In: IEEE International Conference on Evolutionary Computation, pp 303–308 (1997)

  25. Elbeltagi, E., Hegazy, T., Grierson, D.: Comparison among five evolutionary-based optimization algorithms. J. Adv. Eng. Inf. 19(1), 43–53 (2005)

    Article  Google Scholar 

  26. Fourie, P.C., Groenwold, A.A.: The particle swarm optimization algorithm in size and shape optimization. J. Struct. Multidiscip. Optim. 23(4), 259–267 (2002)

    Article  Google Scholar 

  27. Taghirad, H.D.: Belanger, P.R.: \(\mathrm {H}_{\infty }\)-based robust torque control of harmonic drive systems under free- and constrained-motion applications. In: IEEE International Conference on Control Applications, vol. 2, pp 990–994 (1998)

  28. Gu, D.W., Petkov, P.H., Konstantinov, M.M.: Robust Control Design with Matlab, 2nd edn. Springer -Verlag, London (2013)

    Book  MATH  Google Scholar 

  29. Lundstrom, P., Skogestad, S., Wang, Z.Q.: Uncertainty weight selection for H-infinity and mu-control methods. In: Proceedings of the 30th IEEE Conference on Decision and Control, pp 1537–1542 (1991)

  30. Nag, A., Patel, S.S., Kishore, K., Akbar, S.A.: A robust H-infinity based depth control of an autonomous underwater vehicle. In: International Conference on Advanced Electronic Systems, pp 68–73 (2013)

  31. Souza, E.C.D., Maruyama, N.: μ-synthesis for unmanned underwater vehicles current disturbance rejection. J. Braz. Soc. Mech. Sci. Eng. 33(3), 357–365 (2011)

    Article  Google Scholar 

  32. Feng, Z., Allen, R.: Reduced order \(\mathrm {H}_{\infty }\) control of an autonomous underwater vehicle. Control. Eng. Pract. 12(12), 1511–1520 (2004)

    Article  Google Scholar 

  33. Lee, P.M., Hong, S.W., Lim, Y.K., Lee, C.M., Jeon, B.H., Park, J.W.: Discrete-time quasi-sliding mode control of an autonomous underwater vehicle. IEEE J. Ocean. Eng. 24(3), 388–395 (1999)

    Article  Google Scholar 

  34. Rodrigues, L., Tavares, P., Prado, M.: Sliding mode control of an AUV in the diving and steering planes. In: Conference Proceedings on Prospects for the 21st Century, vol. 2, pp 576–583 (1996)

  35. Tang, Z., Zhou, J., Bian, X., Jia, H.: Simulation of optimal integral sliding mode controller for the depth control of AUV. In: IEEE International Conference on Information and Automation, pp 2379–2383 (2010)

  36. Joe, H., Kim, M., Yu, S.C.: Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances. J. Nonlinear Dyn. 78(1), 183–196 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Koofigar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavian, S.H., Koofigar, H.R. Identification-Based Robust Motion Control of an AUV: Optimized by Particle Swarm Optimization Algorithm. J Intell Robot Syst 85, 331–352 (2017). https://doi.org/10.1007/s10846-016-0401-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0401-9

Keywords

Navigation