Skip to main content
Log in

Development and Control of a Multifunctional Prosthetic Hand with Shape Memory Alloy Actuators

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this research paper, non-conventional actuation technology, based on shape memory alloys, is employed for the development of an innovative low-cost five-fingered prosthetic hand. By exploiting the unique properties of these alloys, a compact, silent and modular actuation system is implemented and integrated in a lightweight and anthropomorphic rapid-prototyped hand chassis. A tendon-driven underactuated mechanism provides the necessary dexterity while keeping the mechanical and control complexity of the device low. Tactile sensors are integrated in the fingertips improving the overall hand control. Embedded custom-made electronics for hand interfacing and control are also presented and analyzed. For the position control of each digit, a novel resistance feedback control scheme is devised and implemented. The functionality and performance of the developed hand is demonstrated in grasp experiments with common objects.When compared to the current most advanced commercial devices, the technology applied in this prototype provides a series of improvements in terms of size, weight, and noise, which will enable upper limb amputees to carry out their basic daily tasks more comfortably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosa, A.D.L., Walker, G.R.L., Goldsmith, J.B., Elias, J.H., Godden, M.P., Greenhill, R.M.: Robotic hand. US Patent 2011/0040408 A1

  2. Grebenstein, M., Chalon, M., Friedl, W., Haddadin, S., Wimböck, T., Hirzinger, G., Siegwart, R.: The hand of the DLR hand arm system: Designed for interaction, Vol. 31 (2012)

  3. Bridgwater, L.B., Ihrke, C.A., Diftler, M.A., Abdallah, M.E., Radford, N.A., Rogers, J.M., Yayathi, S., Askew, R.S., Linn, D.M.: The Robonaut 2 hand - designed to do work with tools. In: 2012 IEEE International Conference on Robotics and Automation (ICRA) Saint Paul, pp. 3425–3430. Minnesota (2012)

  4. Kyberd, P.J., Gow, D., Chappell, P.H.: Research and the future of myoelectric prosthetics. In: Muzumdar, A (ed.) Prostheses, Powered Upper Limb, pp 175-190. Springer, Berlin Heidelberg (2004)

    Chapter  Google Scholar 

  5. Pons, J.L., Rocon, E., Ceres, R., Reynaerts, D., Saro, B., Levin, S., Moorleghem, W.V.: The MANUS-HAND dextrous robotics upper limb prosthesis: Mechanical and manipulation aspects. Autonom. Robots 16, 143–163 (2004)

    Article  Google Scholar 

  6. Kargov, A., Ivlev, O., Pylatiuk, C., Asfour, T., Schulz, S., Gräser, A., Dillmann, R., Bretthauer, G.: Applications of a fluidic artificial hand in the field of rehabilitation. In: Kommu, S.S. (eds.) Rehabilitation Robotics, p. 648. Itech Education and Publishing, Vienna (2007)

    Book  Google Scholar 

  7. Biddiss, E., Beaton, D., Chau, T.: Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Tech. 2(6), 346–357 (2007)

    Article  Google Scholar 

  8. Pylatiuk, C., Schulz, S., Doderlein, L.: Results of an internet survey of myoelectric prothetic hand users. Prosthetics Orthot. Int. 31(4), 362–370 (2007)

    Article  Google Scholar 

  9. Dechev, N., Cleghorn, W.L., Naumann, S.: Thumb design of an experimental prosthetic hand. In: International Symposium On Robotics and Automation, pp. 7–12. Monterrey (2000)

  10. Touch Bionics, Inc.: i-Limb Ultra Revolution data sheet

  11. Cipriani, C., Controzzi, M., Carrozza, M.C.: The SmartHand transradial prosthesis. J. Neuro Eng. Rehab. 8(29), 1–13 (2011)

    Google Scholar 

  12. Evans, C.O., Perry, N.C., Van Der Merwe, D.A., Violette, K.D., Coulter, S.M., Doyon, T.A., Blumberg, J.R.D.: Arm prosthetic device. US Patent 2011/0257765 A1

  13. Schulz, S., Pylatiuk, C., Bretthauer, G.: A new ultralight anthropomorphic hand. In: 2001 IEEE International Conference on Robotics and Automation (ICRA), vol. 2433, pp. 2437–2441. Seoul (2001)

  14. Cura, V.O.D., Cunha, F.L., Aguiar, M.L., Cliquet, A. Jr: Study of the different types of actuators and mechanisms for upper limb prostheses. Artif. Organs 27(6), 507–516 (2003). doi:10.1046/j.1525-1594.2003.07000.x

    Article  Google Scholar 

  15. Love, L.J., Lind, R.F., Jansen, J.F.: Mesofluidic actuation for articulated finger and hand prosthetics. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). St. Louis (2009)

  16. Kumar, P.K., Lagoudas, D.C.: Introduction to shape memory alloys. In: Lagoudas, D.C. (eds.) Shape Memory Alloy Modelling and Engineering Applications, pp. 1–51. Springer, New York (2008)

    Book  Google Scholar 

  17. Mavroidis, C., Pfeiffer, C., Mosley, M.J.: Conventional actuators, shape memory alloys, and electrorheological fluids. In: Bar-Cohen, Y. (ed.) Automation, Miniature Robotics & Sensors for Non-Destructive Testing & Evaluation. pp. 189–214. The American Society for Nondestructive Testing, Inc. (ASNT) (2000)

  18. DeLaurentis, K.J., Mavroidis, C.: Mechanical design of a shape memory alloy actuated prosthetic hand. Tech Health Care 10(1), 91–106 (2002)

    Google Scholar 

  19. DeLaurentis, K.J., Mavroidis, C.: Rapid fabrication of a non-assembly robotic hand. Assem Autom 24(4), 394–405 (2004)

    Article  Google Scholar 

  20. Maeno, T., Hino, T.: Miniature five-fingered robot hand driven by shape memory alloy actuators. In: 12th IASTED International Conference, pp. 174–179. Honolulu (2006)

  21. Cho, K.-J., Rosmarin, J., Asada, H.: SBC hand: a lightweight robotic hand with an SMA actuator array implementing C-segmentation. In: 2007 IEEE International Conference on Robotics and Automation (ICRA), pp. 921–926 (2007)

  22. Jung, S., Bae, J., Moon, I.: Lightweight prosthetic hand with five fingers using SMA actuator. In: 11th International Conference on Control, Automation and Systems (ICCAS) Gyeonggi-do, pp. 1797–1800. Korea (South) (2011)

  23. Lee, J.H., Okamoto, S., Matsubara, S.: Development of multi-fingered prosthetic hand using shape memory alloy type artificial muscle. Comput. Technol. Appl. 3(7), 477–484 (2012)

    Google Scholar 

  24. Bundhoo, V.: Design and evaluation of a shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, Thesis, University of Victoria (2009)

  25. Saether, O.F.: Flexinol as actuator for a humanoid finger-possibilities and challenges. Thesis, University of Oslo (2008)

  26. Lan, C.-C., Yang, Y.-N.: An analytical design method for a shape memory alloy wire actuated compliant finger. In: ASME 2008 International Design Engineering Technical Conferences (IDETC) & Computers and Information in Engineering Conference (CIE), vol. 3–6, pp. 1–10. Brooklyn (2008)

  27. Ahmed, M.A., Taher, M.F., Metwalli, S.M.: Shape memory alloy actuator system optimization for new hand prostheses World Academy of Science. Eng. Technol. 61(188), 1021–1026 (2012)

    Google Scholar 

  28. Loh, C.S., Yokoi, H., Arai, T.: New shape memory alloy actuator: Design and application in the prosthetic hand. In: 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS). Shanghai (2005)

  29. Yang, K., Wang, Y.: Design, drive and control of a novel SMA-actuated humanoid flexible gripper. J. Mech. Sci. Technol. 22, 895–904 (2008)

    Article  Google Scholar 

  30. Price, A.D., Jnifene, A., Naguib, H.E.: Design and control of a shape memory alloy based dexterous robot hand. Smart Mater. Struct. 16(4), 1401–1414 (2007)

    Article  Google Scholar 

  31. Dilibal, S., Guner, E., Akturk, N.: Three-finger SMA robot hand and its practical analysis. Robotica 20, 175–180 (2002). doi:10.1017/S0263574701003757

    Article  Google Scholar 

  32. Andrianesis, K., Tzes, A., Kolyvas, E., Koveos, Y.: Biomimetic actuation and control of an anthropomorphic finger. Int. Rev. Mech. Eng. (IREME) 2(1), 163–171 (2008)

    Google Scholar 

  33. Andrianesis, K., Tzes, A.: Design of an anthropomorphic prosthetic hand driven by shape memory alloy actuators. In: 2nd IEEE RAS/EMBS International Conference Biomedical Robotics and Biomechatronics (BioRob), pp. 517–522. Scottsdale (2008)

  34. Andrianesis, K., Koveos, Y., Nikolakopoulos, G., Tzes, A.: Experimental study of a shape memory alloy actuation system for a novel prosthetic hand. In: Cismasiu, C. (ed.) Shape Memory Alloys, pp. 81-106. InTech (2010)

  35. Andrianesis, K., Tzes, A.: Design of an innovative prosthetic hand with compact shape memory alloy actuators. In: 21st Medit. Conference Control and Automation (MED), Platanias-Chania, Crete (2013)

  36. Jones, L.A., Lederman, S.J.: Human hand function. Oxford University Press, Inc., New York (2006)

    Book  Google Scholar 

  37. Banks, J.L.: Design and control of an anthropomorphic robotic finger with multi-point tactile sensation. Thesis, Massachusetts Institute of Technology (2001)

  38. Hollister, A., Buford, W.L., Myers, L.M., Giurintano, D.J., Novick, A.: The axes of rotation of the thumb carpometacarpal joint. J. Orthop. Res. 10(3), 454–460 (1992)

    Article  Google Scholar 

  39. LaViola, J.J. Jr.: A survey of hand posture and gesture recognition techniques and technology. In: vol. CS-99-11. Brown University, Providence (1999)

  40. Feix, T.: Anthropomorphic hand optimization based on a latent space analysis, Thesis, Technical University of Vienna (2011)

  41. Henderson, A., Pehoski, C.: Hand function in the child: Foundations for remediation. Mosby, St. Louis, Missouri (2006)

  42. NASA: Anthropometry and biomechanics. In: Man-systems integration standards, vol. 1. vol. 3 (1995)

  43. Weir, R.F., Sensinger, J.W.: The design of artificial arms and hands for prosthetic applications. In: Kutz, M. (ed.) Biomedical Engineering and Design Handbook, pp. 537–598. McGraw-Hill, New York (2009)

    Google Scholar 

  44. Sangole, A.P., Levin, M.F.: Arches of the hand in reach to grasp. J. Biomech. 41(4), 829–837 (2008)

    Article  Google Scholar 

  45. Gosselin, C., Pelletier, F., Laliberte, T.: An anthropomorphic underactuated robotic hand with 15 Dofs and a single actuator. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 19–23. Pasadena (2008)

  46. Birglen, L., Laliberté, T., Gosselin, C.: Design and control of the Laval underactuated hands. In: Underactuated Robotic Hands. Springer Tracts in Advanced Robotics, vol. 40, pp. 171–207. Berlin Heidelberg, Springer (2008)

  47. Birglen, L., Laliberté, T., Gosselin, C.: Grasping vs. manipulating. In: Underactuated Robotic Hands, vol. 40, pp. 7–31. Springer Berlin, Heidelberg, Berlin (2008)

    Book  Google Scholar 

  48. Buchholz, B., Armstrong, T.J., Goldstein, S.A.: Anthropometric data for describing the kinematics of the human hand. Ergonomics 35(3), 261–273 (1992). doi:10.1080/00140139208967812

    Article  Google Scholar 

  49. Gómez, G., Hernandez, A., Hotz, P.E.: An adaptive neural controller for a tendon driven robotic hand. In: Arai, T. (ed.) 9th International Conference on Intelligent Autonomous Systems (IAS), pp. 298-307. Tokyo, IOS Press (2006)

    Google Scholar 

  50. Palm, W.: Rapid prototyping primer. In: vol. 2/4/2010. Penn State Learning Factory (1998)

  51. Martin, T.B., Ambrose, R.O., Diftler, M.A., Platt, R. Jr., Butzer, M.J.: Tactile gloves for autonomous grasping with the NASA/DARPA Robonaut. In: 2004 IEEE International Conference on Robotics and Automation (ICRA), vol. 1712, pp. 1713–1718. New Orleans

  52. Evanczuk, S.: Fundamentals of temperature-sensing devices (2011)

  53. Mohd Jani, J., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56(0), 1078–1113 (2014). doi:10.1016/j.matdes.2013.11.084

    Article  Google Scholar 

  54. In: Smith, D.G., Michael, J.W., Bowker, J.H. (eds.) : Atlas of Amputations and Limb Deficiencies, 3rd edn. American Academy of Orthopaedic Surgeons (2004)

  55. In: Muzumdar, A. (ed.) : Powered Upper Limb Prostheses: Control, Implementation and Clinical Application, 1st edn. Springer, New York (2004)

  56. Madden, J.D.W., Vandesteeg, N.A., Anquetil, P.A., Madden, P.G.A., Takshi, A., Pytel, R.Z., Lafontaine, S.R., Wieringa, P.A., Hunter, I.W.: Artificial muscle technology: Physical principles and naval prospects. IEEE J. Ocean. Eng. 29(3), 706–728 (2004). doi:10.1109/joe.2004.833135

    Article  Google Scholar 

  57. Uustal, H., Baerga, E.: Prosthetics and orthotics. In: Cuccurullo, S.J. (ed.) Physical Medicine and Rehabilitation Board Review. Demos Medical Publishing, New York (2004)

    Google Scholar 

  58. Dynalloy, Inc.: Technical Characteristics of Flexinol Actuator Wires (2010)

  59. Abolfathi, P.P.: Development of an Instrumented and Powered Exoskeleton for the Rehabilitation of the Hand, Thesis, University of Sydney (2007)

  60. MacGregor, R.: Shape memory alloy actuators and control methods. US Patent 6,574,958 (2003)

  61. Belter, J.T., Dollar, A.M.: Performance characteristics of anthropomorphic prosthetic hands. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), ETH Zurich, pp. 921–927. Switzerland (2011)

  62. Teh, Y.H., Featherstone, R.: An architecture for fast and accurate control of shape memory alloy actuators. Int. J. Robot. Res. 27(5), 595–611 (2008). doi:10.1177/0278364908090951

    Article  Google Scholar 

  63. Ma, N., Song, G., Lee, H.-J.: Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks. Smart Mater. Struct. 13(4), 777–783 (2004). doi:10.1088/0964-1726/13/4/015

    Article  Google Scholar 

  64. Chatterjee, A., Aggarwal, V., Ramos, A., Acharya, S., Thakor, N.V.: A brain-computer interface with vibrotactile biofeedback for haptic information. J. NeuroEngineering Rehabil. 4(40) (2007)

  65. Davalli, A., Sacchetti, R., Fanin, S., Avanzolini, G., Urbano, E.: Biofeedback for upper limb myoelectric prostheses. Technol. Disabil. 13, 161–172 (2000)

    Google Scholar 

  66. Engeberg, E.D., Meek, S.: Enhanced visual feedback for slip prevention with a prosthetic hand. Prosthetics Orthot. Int. 36(4), 423–429 (2012). doi:10.1177/0309364612440077

    Article  Google Scholar 

  67. Sapsanis, C., Georgoulas, G., Tzes, A., Lymberopoulos, D.: Improving EMG based Classification of basic hand movements using EMD. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5754–6757. Osaka

  68. Lake, C., Dodson, R.: Progressive upper limb pros- thetics. Phys. Med. Rehabil. Clinics N. Am. 17(1), 49–72 (2006)

    Article  Google Scholar 

  69. Cocaud, C., Price, A., Jnifene, A., Naguib, H.: Position control of an experimental robotic arm driven by artificial muscles based on shape memory alloys. Int. J. Mech. Mater. Des. 3(3), 223–236 (2006)

    Article  Google Scholar 

  70. Ashrafiuon, H., Eshraghi, M., Elahinia, M.H.: Position control of a three-link shape memory alloy actuated robot. J. Intell. Mater. Syst. Struct. 17(5), 381–392 (2006)

    Article  Google Scholar 

  71. Rezaeeian, A., Yousefi-Koma, A., Shasti, B., Doosthoseini, A.: ANFIS modeling and feedforward control of shape memory alloy actuators, Vol. 2 (2008)

  72. Cho, K.-J., Asada, H.: Architecture design of a multi-axis cellular actuator array using segmented binary control of shape memory alloy. IEEE Trans. Robot. 22(4), 831–843 (2006)

    Article  Google Scholar 

  73. Zecca, M., Roccella, S., Cappiello, G., Ito, K., Imanishi, K., Miwa, H., Carrozza, M.C., Dario, P., Takanishi, A.: From the human hand to a humanoid hand: Biologically-inspired approach for the development of Robocasa Hand #1. In: Zielinska, T., Zielinski, C. (eds.) 16th CISM-IFToMM RoManSy Symposium, pp. 287–294. Warsaw, Springer

  74. Pikul, J.H., Gang Zhang, H., Cho, J., Braun, P.V., King, W.P.: High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013). doi:10.1038/ncomms2747

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Tzes.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 24.5 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianesis, K., Tzes, A. Development and Control of a Multifunctional Prosthetic Hand with Shape Memory Alloy Actuators. J Intell Robot Syst 78, 257–289 (2015). https://doi.org/10.1007/s10846-014-0061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0061-6

Keywords

Mathematics Subject Classifications (2010)

Navigation