Skip to main content
Log in

Mapping for the Support of First Responders in Critical Domains

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In critical domains such as urban search and rescue (USAR), and bomb disposal, the deployment of teleoperated robots is essential to reduce the risk of first responder personnel. Teleoperation is a difficult task, particularly when controlling robots from an isolated safety zone. In general, the operator has to solve simultaneously the problems of mission planning, target identification, robot navigation, and robot control. We introduce a system to support teleoperated navigation with real-time mapping consisting of a two-step scan matching method that re-considers data associations during the search over transformations. The algorithm processes data from laser range finder and gyroscope only, thereby it is independent from the robot platform. Furthermore, we introduce a user-guided procedure for improving the global consistency of maps generated by the scan matcher. Globally consistent maps are computed by a graph-based maximum likelihood method that is biased by localizing crucial parts of the scan matcher trajectory on a prior given geo-tiff image. The approach has been implemented as an embedded system and extensively tested on robot platforms designed for teleoperation in critical situations, such as bomb disposal. Furthermore, the system was evaluated in a test maze by first responders during the Disaster City event in Texas, 2008.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burgard, W., Stachniss, C., Grisetti, G., Steder, B., Kümmerle, R., Dornhege, C.: Ruhnke, M., Kleiner, A., Tardós, J.D.: A comparison of slam algorithms based on a graph of relations. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots & Systems (IROS). St. Louis, MO (2009)

  2. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  3. Chen, C., Wang, H.: Large-scale loop-closing by fusing range data and aerial image. Int. J. Robot. Autom. 22(2), 160–169 (2007)

    Google Scholar 

  4. Cox, I.J.: Blanche: position estimation for an autonomous robot vehicle. In: Iyengar, S.S., Elfes, A. (eds.) Autonomous Mobile Robots: Control, Planning, and Architecture, vol. 2, pp. 285–292. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  5. Dellaert, F.: Square Root SAM. In: Proc. of Robotics: Science and Systems (RSS), pp. 177–184. Cambridge, MA (2005)

    Google Scholar 

  6. Eustice, R., Singh, H., Leonard, J.J.: Exactly sparse delayed-state filters. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 2428–2435. Barcelona, Spain (2005)

    Google Scholar 

  7. Früh, C., Zakhor, A.: An automated method for large-scale, ground-based city model acquisition. Int. J. Comput. Vis. 60, 5–24 (2004)

    Article  Google Scholar 

  8. Grisetti, G., Stachniss C., Burgard, W.: Improving grid-based SLAM with rao-blackwellized particle filters by adaptive proposals and selective resampling. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 667–672. Barcelona, Spain (2005)

  9. Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with Rao-Black-wellized particle filters by adaptive proposals and selective resampling. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 2443–2448. Barcelona, Spain (2005)

  10. Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.: Efficient estimation of accurate maximum likelihood maps in 3D. In: Proc. of the Int. Conf. on Intelligent Robots and Systems (IROS). San Diego, CA (2007)

  11. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. Autom. 23, 34–46 (2007)

    Google Scholar 

  12. Grisetti, G., Stachniss, C., Grzonka, S., Burgard, W.: A tree parameterization for efficiently computing maximum likelihood maps using gradient descent. In: Proc. of Robotics: Science and Systems (RSS). Atlanta, GA (2007)

  13. Grisetti, G., Stachniss, C., Burgard, W.: Non-linear constraint network optimization for efficient map learning. IEEE Trans. Intell. Transp. Syst. 10(3), 428–439 (2009)

    Article  Google Scholar 

  14. Gutmann, J.-S., Konolige, K.: Incremental mapping of large cyclic environments. In: Proc. of the IEEE Int. Symposium on Computational Intelligence in Robotics and Automation (CIRA) (1999)

  15. Gutmann, J.-S.: Robuste Navigation autonomer mobiler Systeme. PhD thesis, Albert-Ludwigs-Universität Freiburg. ISBN 3-89838-241-9 (2000)

  16. Hähnel, D.: Mapping with Mobile Robots. PhD thesis, Universität Freiburg. Freiburg, Deutschland (2005)

  17. Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new approach for filtering nonlinear systems. In: Proc. of the American Control Conference, pp. 1628–1632. Seattle, WA (1995)

  18. Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: fast incremental smoothing and mapping with efficient data association. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA). Rome, Italy (2007)

  19. Kleiner, A., Scrapper, C., Jacoff, A.: RoboCupRescue Interleague Challenge 2009: bridging the gap between simulation and reality. In: Proceedings of the 9th Workshop on Performance Metrics for Intelligent Systems (PerMIS ‘09), pp. 115–121. ACM, New York (2009). doi:10.1145/1865909.1865933

    Chapter  Google Scholar 

  20. Korah, T., Rasmussen, C.: Probabilistic contour extraction with model-switching for vehicle localization. Intelligent Vehicles Symposium, 2004 IEEE, pp. 710–715 (2004)

  21. Kümmerle, R., Steder, B., Dornhege, C., Kleiner, A., Grisetti, G., Burgard, W.: Large scale graph-based SLAM using aerial images as prior information. In: Proceedings of Robotics: Science and Systems (RSS). Seattle, WA (2009)

  22. Leonard, J.J., Durrant-Whyte, H.F.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. Autom. 7(4), 376–382 (1991)

    Article  Google Scholar 

  23. Leung, K.Y.K., Clark, C.M., Huissoon, J.P.: Localization in urban environments by matching ground level video images with an aerial image. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA). Pasadena, CA (2008)

  24. Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton. Robots 4, 333–349 (1997)

    Article  Google Scholar 

  25. Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2d range scans. J. Intell. Robot. Syst. 18(3), 249–275 (1997)

    Article  Google Scholar 

  26. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), pp. 1151–1156. Acapulco, Mexico (2003)

  27. Moravec, H.P., Elfes, A.E.: High resolution maps from wide angle sonar. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 116–121 (1985)

  28. Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Mag. 9(2), 61–74 (1988)

    Google Scholar 

  29. Olson, E., Leonard, J., Teller, S.: Fast iterative optimization of pose graphs with poor initial estimates. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 2262–2269 (2006)

  30. Ranganathan, A., Kaess, M., Dellaert, F.: Loopy sam. In: Proc. of the Int. Conf. on Artificial Intelligence (IJCAI) (2007)

  31. Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial realtionships in robotics. In: Cox, I., Wilfong, G., (eds.) Autonomous Robot Vehicles, pp. 167–193. Springer Verlag (1990)

  32. Stachniss, C., Frese, U., Grisetti, G.: OpenSLAM.org—Give Your Algorithm to the Community. http://www.openslam.org (2007)

  33. Thrun, S., Liu, Y., Koller, D., Ng, A.Y., Ghahramani, Z., Durrant-Whyte, H.: Simultaneous localization and mapping with sparse extended information filters. Int. J. Rob. Res. 23(7/8), 693–716 (2004)

    Article  Google Scholar 

  34. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)

  35. Uhlmann, J.: Dynamic Map Building and Localization: New Theoretical Foundations. PhD thesis, University of Oxford (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Dornhege.

Additional information

This research was partially supported by DFG as part of the collaborative research center SFB/TR-8 Spatial Cognition Project R7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleiner, A., Dornhege, C. Mapping for the Support of First Responders in Critical Domains. J Intell Robot Syst 64, 7–31 (2011). https://doi.org/10.1007/s10846-010-9520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9520-x

Keywords

Navigation