Skip to main content
Log in

Robust Formation Control of Multiple Wheeled Mobile Robots

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper considers formation control of a group of wheeled mobile robots with uncertainty. Decentralized cooperative robust controllers are proposed in two steps. In the first step, cooperative control laws are proposed for multiple kinematic systems with the aid of results from graph theory such that a group of robots comes into a desired formation. In the second step, cooperative robust control laws for multiple uncertain dynamic systems are proposed with the aid of backstepping techniques and the passivity properties of the dynamic systems such that multiple robots comes into a desired formation. Since communication delay is inevitable in cooperative control, its effect on the proposed controllers is analyzed. Simulation results show the effectiveness of the proposed controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Desai, J.P., Ostrowski, J.P., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17, 905–908 (2001)

    Article  Google Scholar 

  2. Fierro, R., Das, A., Kumar, V., Ostrowski, J.: Hybrid control of formations of robots. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 157–162 (2001)

  3. Mesbahi, M., Hadaegh, F.Y.: Formation flying control of multiple spacecraft via graphs, matrix inequalities, and switching. AIAA J. Guid. Control Dyn. 24, 369–377 (2001)

    Article  Google Scholar 

  4. Tanner, H.G., Pappas, G.J., Kumar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20, 443–455 (2004)

    Article  Google Scholar 

  5. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  6. Parker, L.E.: Alliance: an architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 14, 220–240 (1998)

    Article  Google Scholar 

  7. Beard, R.W., Lawton, J., Hadaegh, F.Y.: A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst. Technol. 9(6), 777–790 (2001)

    Article  Google Scholar 

  8. Kang, W., Xi, N., Sparks, A.: Formation control of autonomous agents in 3d workspace. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 1755–1760 (2000)

  9. Lewis, M., Tan, K.-H.: High precision formation control of mobile robots using virtual structures. Auton. Robots 4, 387–403 (1997)

    Article  Google Scholar 

  10. Yamaguchi, H.: A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations. Robot. Auton. Syst. 43, 257–282 (2003)

    Article  Google Scholar 

  11. Lawton, J., Beard, R.W., Young, B.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)

    Article  Google Scholar 

  12. Feddema, J.T., Lewis, C., Schoenwald, D.A.: Decentralized control of cooperative robotic vehicles: theory and application. IEEE Trans. Robot. Autom. 18(5), 852–864 (2002)

    Article  Google Scholar 

  13. Justh, E.W., Krishnaprasad, P.S.: Equilibrium and steering laws for planar formations. Syst. Control. Lett. 52, 25–38 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dimarogonas, D.V., Kyriakopoulos, K.J.: On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Automat. Contr. 52, 916–922 (2007)

    Article  MathSciNet  Google Scholar 

  15. Mastellone, S., Stipanovic, D.M., Graunke, C., Intlekofer, K., Spong, M.W.: Formation control and collision avoidance for multi-agent non-holonomic systems: theory and experiments. Int. J. Rob. Res. 27, 107–126 (2008)

    Article  Google Scholar 

  16. Dierks, T., Jagannathan, S.: Neural network output feedback control of robot formations. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40(2), 383–399 (2010)

    Article  Google Scholar 

  17. Dong, W., Farrell, J.A.: Decentralized cooperative control of multiple nonholonomic systems. In: Proc. of Conference of Decision and Control (2007)

  18. Dong, W., Farrell, J.A.: Cooperative control of multiple nonholonomic mobile agents. IEEE Trans. Automat. Contr. 53(7), 1434–1448 (2008)

    Article  MathSciNet  Google Scholar 

  19. Dong, W., Farrell, J.A.: Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty. Automatica 45, 706–710 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bloch, A.M., Reyhanoglu, M., McClamroch, N.H.: Control and stabilization of nonholonomic dynamic systems. IEEE Trans. Automat. Contr. 37, 1746–1757 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dong, W., Xu, W.L.: Adaptive tracking control of uncertain nonholonomic dynamic system. IEEE Trans. Automat. Contr. 46(3), 450–454 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lewis, F., Abdallah, C., Dawson, D.: Control of Robot Manipulators. Macmillan, New York, (1993)

    Google Scholar 

  23. Chung, F.R.K.: Spectral graph theory. In: Regional Conf. Series in Mathematics of Amer. Mathematical Soc., vol. 92 (1997)

  24. Merris, R.: A survey of graph laplacians. Linear and Multilinear Algebra 39, 19–31 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Merris, R.: Laplacian graph eigenvectors. Linear Algebra Appl. 278, 221–236 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1987)

  27. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Contr. 49, 101–115 (2004)

    Article  MathSciNet  Google Scholar 

  28. Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs, N.J. (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, W. Robust Formation Control of Multiple Wheeled Mobile Robots. J Intell Robot Syst 62, 547–565 (2011). https://doi.org/10.1007/s10846-010-9451-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9451-6

Keywords

Mathematics Subject Classifications (2010)

Navigation