Skip to main content
Log in

Adaptive Polar-Space Motion Control for Embedded Omnidirectional Mobile Robots with Parameter Variations and Uncertainties

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents an adaptive polar-space motion controller for trajectory tracking and stabilization of a three-wheeled, embedded omnidirectional mobile robot with parameter variations and uncertainties caused by friction, slip and payloads. With the derived dynamic model in polar coordinates, an adaptive motion controller is synthesized via the adaptive backstepping approach. This proposed polar-space robust adaptive motion controller was implemented into an embedded processor using a field-programmable gate array (FPGA) chip. Furthermore, the embedded adaptive motion controller works with a reusable user IP (Intellectual Property) core library and an embedded real-time operating system (RTOS) in the same chip to steer the mobile robot to track the desired trajectory by using hardware/software co-design technique and SoPC (system-on-a-programmable-chip) technology. Simulation results are conducted to show the merit of the proposed polar-space control method in comparison with a conventional proportional-integral (PI) feedback controller and a non-adaptive polar-space kinematic controller. Finally, the effectiveness and performance of the proposed embedded adaptive motion controller are exemplified by conducting several experiments on steering an embedded omnidirectional mobile robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, C.J., Tsai, C.C.: Localization of an autonomous mobile robot based on ultrasonic sensory information. J. Intell. Robot. Syst. 30, 267–277 (2001)

    Article  MATH  Google Scholar 

  2. Jiang, Z.P., Nijmeijer, H.: A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Trans. Automat. Contr. 44, 265–279 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dixon, W.E., Dawson, D.M., Zergeroglu, E., Zhang, F.: Robust tracking and regulation control for mobile robots. Int. J. Robust Nonlinear Control 10, 199–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lee, T.C., Song, K.T., Lee, C.H., Teng, C.C.: Tracking control of unicycle-modeled mobile robots using a saturation feedback controller. IEEE Trans. Control Syst. Technol. 9, 305–318 (2001)

    Article  Google Scholar 

  5. Li, T.H., Chang, S.J.: Autonomous fuzzy parking control of a car-like mobile robot. IEEE Trans. Syst. Man Cybern. Syst. Hum. 33(4), 451–465 (2003)

    Article  Google Scholar 

  6. Pin, F.G., Killough, S.M.: A new family of omnidirectional and holonomic wheeled platforms for mobile robots. IEEE Trans. Automat. Contr. 10(4), 480–489 (1994)

    Google Scholar 

  7. Watanabe, K., Shiraishi, Y., Tzafestas, S., Tang, J., Fukuda, T.: Feedback control of an omnidirectional autonomous platform for mobile service robots. J. Intell. Robot. Syst. 22, 315–330 (1998)

    Article  Google Scholar 

  8. Kalmár-Nagy, T., D’Andrea, R., Ganguly, P.: Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle. Robot. Auton. Syst. 46, 47–64 (2004)

    Article  Google Scholar 

  9. Williams, R.L. II, Carter, B.E., Gallina, P., Rosati, G.: Dynamic model with slip for wheeled omnidirectional robots. IEEE Trans. Automat. Contr. 18(3), 285–293 (2002)

    Google Scholar 

  10. Huang, H.C., Tsai, C.C.: FPGA implementation of an embedded robust adaptive controller for autonomous omnidirectional mobile platform. IEEE Trans. Ind. Electron. 56(5), 1604–1616 (2009)

    Article  Google Scholar 

  11. Park, K., Chung, H., Lee, J.G.: Point stabilization of mobile robots via state-space exact feedback linearization. Robot. Comput.-Integr. Manuf. 16(5), 353–363 (2000)

    Article  Google Scholar 

  12. Yang, J.M., Kim, J.H.: Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans. Automat. Contr. 15(3), 578–587 (1999)

    Article  Google Scholar 

  13. Chwa, D.K.: Sliding mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Trans. Control Syst. Technol. 12(4), 637–644 (2004)

    Article  MathSciNet  Google Scholar 

  14. Huang, H.C., Tsai, C.C.: Simultaneous tracking and stabilization of an omnidirectional mobile robot in polar coordinates: a unified control approach. Robotica 27(3), 447–458 (2009)

    Article  MathSciNet  Google Scholar 

  15. Huang, H.C., Tsai, C.C.: Adaptive robust control of an omnidirectional mobile platform for autonomous service robots in polar coordinates. J. Intell. Robot. Syst. 51(4), 439–460 (2008)

    Article  Google Scholar 

  16. Campo, I., Echanobe, J., Bosque, G., Tarela, J.M.: Efficient hardware/software implementation of an adaptive neuro-fuzzy system. IEEE Trans. Fuzzy Syst. 16(3), 761–778 (2008)

    Article  Google Scholar 

  17. Kung, Y.S., Tsai, M.H.: FPGA-based speed control IC for PMSM drive with adaptive fuzzy control. IEEE Trans. Power Electron. 22(6), 2476–2486 (2007)

    Article  Google Scholar 

  18. Solano, S.S., Cabrera, A.J., Baturone, I., Moreno-Velo, F.J., Brox, M.: FPGA implementation of embedded fuzzy controllers for robotic applications. IEEE Trans. Ind. Electron. 54(4), 1937–1945 (2007)

    Article  Google Scholar 

  19. Huang, S.J., Wu, S.S.: Vision-based robotic motion control for non-autonomous environment. J. Intell. Robot. Syst. 54(5), 733–754 (2009)

    Article  Google Scholar 

  20. Han, S.H., Lee, M.H., Mohler, R.R.: Real-time implementation of a robust adaptive controller for a robotic manipulator based on digital signal processors. IEEE Trans. Syst. Man Cybern. Syst. Hum. 29(2), 194–204 (1999)

    Article  Google Scholar 

  21. Li, T.H., Chang, S.J., Chen, Y.X.: Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot. IEEE Trans. Ind. Electron. 50(5), 867–880 (2003)

    Article  Google Scholar 

  22. Deliparaschos, K.M., Nenedakis, F.I., Tzafestas, S.G.: Design and implementation of a fast digital fuzzy logic controller using FPGA technology. J. Intell. Robot. Syst. 45(1), 77–96 (2006)

    Article  Google Scholar 

  23. Juang, C.F., Chen, J.S.: Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation. IEEE Trans. Ind. Electron. 53(3), 941–949 (2006)

    Article  Google Scholar 

  24. Newman, K.E., Hamblen, J.O., Hall, T.S.: An introductory digital design course using a low-cost autonomous robot. IEEE Trans. Ed. 45(3), 289–296 (2002)

    Article  Google Scholar 

  25. Fife, W.S., Archibald, J.K.: Reconfigurable on-board vision processing for small autonomous vehicles. EURASIP Journal on Embedded Systems 2007, 1–14 (2007)

    Article  Google Scholar 

  26. Esmaeilzadeh, H., Farzan, F., Shahidi, N., Fakhraie, S.M., Lucas, C., Tehranipoor, M.: NnSP: embedded neural networks stream processor. In: 48th Midwest Symposium on Circuits and Systems 1, 223–226 (2005)

  27. Kuo, C.H., Chen, C.Y.: Development of vision guided small size humanoid soccer robot using chip based controllers. In: Proceedings of the International Automatic Control Conference, pp. 854–859 (2007)

  28. Krstic, M., Kanellakopoulos, L., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  29. Kung, Y.S., Shu, G.S.: Design and implementation of a control IC for vertical articulated robot arm using SOPC technology. In: Proceedings of the IEEE International Conference on Mechatronics, pp. 532–536 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chih Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HC., Tsai, CC. & Lin, SC. Adaptive Polar-Space Motion Control for Embedded Omnidirectional Mobile Robots with Parameter Variations and Uncertainties. J Intell Robot Syst 62, 81–102 (2011). https://doi.org/10.1007/s10846-010-9438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9438-3

Keywords

Navigation