Skip to main content
Log in

Semi-heterarchical Allocation and Routing Processes in FMS Control: A Stigmergic Approach

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper deals with the production process control in flexible manufacturing systems (FMS), in which heterarchical relations exist between some decisional entities. After presenting a brief state-of-the art of the literature on the heterarchical concept we propose a semi-heterarchical control structure (composed of DAP: dynamic allocation process and of DRP: dynamic routing process), and explain the objective of our study. After presenting the concept of stigmergy, we focus in this paper on our innovative approach to routing in DRP including the active product concept. We then describe our two levels model and its main components (a virtual level VL in which virtual active products evolve stochastically in accelerated time, and a physical level PL in which physical active products evolve deterministically in real time). Our innovative approach exploits the capacity of a stigmergic routing control model to automatically find efficient routing paths for active products in FMS undergoing perturbations. After a brief presentation of the Netlogo simulation context, the qualitative and quantitative results are presented. The results illustrate the advantages of our routing approach and its capacity to surmount perturbations. The integration and implementation of our approach at the AIP-PRIMECA center in Valenciennes France is then detailed. Finally, we provide a brief overview of our future research concerning: firstly, a way to link our DRP model with the DAP distributed control system, secondly, the re-formulation of our model within the HMS (holonic manufacturing system) concept, and thirdly, the development of a new challenging and innovative concept of “hypervision”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aissani, N., Trentesaux, D., Beldjilali, B.: Use of machine learning for continuous improvement of the real time manufacturing control system performances. Int. J. Ind. Syst. Eng. 3(4), 474–497 (2008)

    Article  Google Scholar 

  2. Arkin, R.C.: Behaviour-based robotics. The MIT Press, Cambridge, MA (1998)

    Google Scholar 

  3. Baker, A.D.: A survey of factory control algorithms that can be implemented in a multi-agent heterarchy: dispatching, scheduling, and pull. J. Manuf. Syst. 17(4), 297–320 (1998)

    Article  Google Scholar 

  4. Baïna, S., Morel, G.: Product centric holons for synchronisation and interoperability in manufacturing environments. In: IFAC Conference on Information Control Problems in Manufacturing 2006, pp. 543–548 (2006)

  5. Bousbia, S., Anli, A., Trentesaux, D., Grislin, E.: Agile scheduling of flexible manufacturing systems of production. In: 17th World Congress—IMACS 05, CD-Rom, paper no. T6-R-00-0316, Paris, July 2005, 8 p. (2005)

  6. Brückner, S.: Return from the Ant Synthetic Ecosystems for Manufacturing Control. Thesis Humboldt-University of Berlin (2000)

  7. Cavalieri, S., Garetti, M., Macchi, M., Taisch, M.: An experimental benchmarking of two multi-agent architectures for production scheduling and control. Comput. Ind. 43, 139–152 (2000)

    Article  Google Scholar 

  8. Chen, R., Lu, K., Chang, C.: Application of the multi-agent approach in just-in-time production control system. Int. J. Comput. Appl. Technol. 17(2), 90–100 (2003)

    Article  Google Scholar 

  9. Clarinet System: Network connectivity for mobile devices. http://www.clarinetsys.com (2007)

  10. Deneubourg, J.L., Pasteels, J.M., Verhaeghe, J.C.: Probabilistic behaviour in ants: a strategy of errors? J. Theor. Biol. 105, 259–271 (1983)

    Article  Google Scholar 

  11. Dorigo, M., Colombetti, M.: Robot Shaping: An Experiment in Behaviour Engineering. The MIT Press, Cambridge, MA (1998)

    Google Scholar 

  12. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artif. Life 5(2), 137–172 (1999)

    Article  Google Scholar 

  13. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge, MA (2004)

    MATH  Google Scholar 

  14. Duffie, N.A., Prabhu, V.: Heterarchical control of highly distributed manufacturing systems. Int. J. Comput. Integr. Manuf. 9(4), 270–281 (1996)

    Article  Google Scholar 

  15. Ferber, J.: Les Systèmes Multi-agents. InterEditions (1995)

  16. Gou, L., Luh, P.B., Kyoya, Y.: Holonic manufacturing scheduling: architecture, cooperation mechanism, and implementation. Comput. Ind. 37, 213–231 (1998)

    Article  Google Scholar 

  17. Grassé, P.P.: La reconstruction du nid et les coordination inter-individuelles chez Bellicositermes natalensis et Cubiter-mes sp. La théorie de la stigmergie: essai d’interprétation du comportement des termites constructeurs. Insectes Soc. 6, 41–83 (1959)

    Article  Google Scholar 

  18. Hadeli, T., Valckenaers, P., Kollingbaum, M., Van Brussel, H.: Multi-agent coordination and control using stigmergy. Comput. Ind. 53, 75–96 (2004)

    Article  Google Scholar 

  19. Hsieh, F.-S.: Holarchy formation and optimization in holonic manufacturing systems with contract net. Automatica 44, 959–970 (2008)

    Article  MathSciNet  Google Scholar 

  20. Koestler, A.: The Ghost in the Machine. Hutchinson, London (1967)

    Google Scholar 

  21. Kurabayashi, D.: Development of an intelligent data carrier (IDC) system and its applications. In: Proceedings of 4th International Symposium on Artificial Life and Robotics, pp. 34–39 (1999)

  22. Lastra, J.L.M., Colombo, A.W.: Engineering framework for agent-based manufacturing control. Eng Appl Artif Intell. 19, 625–640 (2006)

    Article  Google Scholar 

  23. Leitao, P., Restivo, F.: ADACOR: a holonic architecture for agile and adaptive manufacturing control. Comput. Ind. 57, 121–130 (2006)

    Article  Google Scholar 

  24. Mascada WP4 Report: ACA (autonomous co-operating agents) framework for manufacturing control systems (1999)

  25. McCulloch, W.S.: Heterarchy of values determined by the topology of nervous nets. Bull. Math. Biophys. 7, 89–93 (1945)

    Article  Google Scholar 

  26. McFarlane, D., Sarma, S., Chirn, J.L., Ashton, K.: The intelligent product in manufacturing control and management. In: 15th Triennal IFAC World Congress. Barcelone, Spain (2002)

    Google Scholar 

  27. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays—IEICE Transactions on Information and Systems—Special issue on Networked Reality (1994)

  28. Montech Technology. Conveyor systems. http://www.montech.com (2007)

  29. Maione, G., Naso, D.: A soft computing approach for task contracting in multi-agent manufacturing control. Comput. Ind. 52, 199–219 (2003)

    Article  Google Scholar 

  30. Okino, N.: Bionic manufacturing system. In: Peklenik, J. (ed.) Flexible Manufacturing System: Past–Present–Future, pp. 73–95. CIRP, Paris (1993)

    Google Scholar 

  31. Ouelhadj, D., Petrovic, S., Cowling, P., Meisels, A.: Inter-agent cooperation and communication for agent-based robust dynamic scheduling in steel production. Adv. Eng. Inf. 18(3), 161–172 (2005)

    Article  Google Scholar 

  32. Parunak, H.V.D., Brueckner, S., Sauter, J.: ERIM’s approach to fine-grained agents. In: Proceedings of the NASA/JPL Workshop on Radical Agent Concepts (WRAC’2001). Greenbelt, MD (2001)

  33. Payton, D., Daily, M., Estkowski, R., Howard, M., Lee, C.: Pheromone robotics. In: Autonomous Robots, vol. 11, no. 3, pp. 319–324. Kluwer, Norwell, MA (2001)

    Google Scholar 

  34. Peeters, P., Van Brussel, H., Valckenaers, P., Wyns, J., Bongaerts, L., Heikkilä, T., Kollingbaum, M.: Pheromone based emergent shop floor control system for flexible flow shops. In: Proceedings of International Workshop IWES’99, Kobe, Japan, Dec. 6–7 (1999)

  35. Reaidy, J., Massotte, P., Diep, D.: Comparison of negotiation protocols in dynamic agent-based manufacturing systems. Int. J. Prod. Econ. 99, 117–130 (2006)

    Article  Google Scholar 

  36. Russell, R.A.: Laying and sensing odor markings as a strategy for assisting mobile robot navigation tasks. IEEE Robot. Autom. Mag. 2, 3–9 (1995)

    Google Scholar 

  37. Sallez, Y., Trentesaux, D., Berger, T., Tahon, C.: Product-based and resource-based heterarchical approaches for dynamic FMS scheduling. Comput. Ind. Eng. 46, 611–623 (2004)

    Article  Google Scholar 

  38. Sousa, P., Ramos, C.: A distributed architecture and negotiation protocol for scheduling in manufacturing systems. Comput. Ind. 38, 103–113 (1999)

    Article  Google Scholar 

  39. Smith, R.G.: The contract net protocol: high level communication and control in a distributed problem solver. IEEE Trans. Comput. C29(12), 1104–1113 (1980)

    Article  Google Scholar 

  40. Tharumarajah, A.: Survey of resource allocation methods for distributed manufacturing systems. Prod. Plan. Control 12(1), 58–68 (2001)

    Article  Google Scholar 

  41. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. J. Artif. Life 5(2), 97–116 (1999)

    Article  Google Scholar 

  42. Trentesaux, D., Dindeleux, R., Tahon, C.: A multicriteria decision support system for dynamic task allocation in a distributed production activity control structure. Int. J. Comput. Integr. Manuf. 11(1), 3–17 (1998a)

    Article  Google Scholar 

  43. Trentesaux, D., Tahon, C., Ladet, P.: Hybrid production control approach for J.I.T. scheduling. Artif. Intell. Eng. 12, 49–67 (1998b)

    Article  Google Scholar 

  44. Ulieru, M., Norrie, D.: Fault recovery in distributed manufacturing systems by emergent holonic re-configuration: a fuzzy multi-agent modeling approach. Inf. Sci. 127, 101–123 (2000)

    Article  Google Scholar 

  45. Valckenaers, P., Hadeli, T., Saint Germain, B., Verstraete, P., Van Brussel, H.: Emergent short-term forecasting through ant colony engineering in coordination and control systems. Adv. Eng. Inform. 20(3), 261–278 (2006)

    Article  Google Scholar 

  46. Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, L.: Reference architecture for holonic manufacturing systems: PROSA. Comput. Ind. 37(3), 255–274 (1998)

    Article  Google Scholar 

  47. Verstraete, P., Valckenaers, P., Van Brussel, H., Saint Germain, B., Hadeli, K., Van Belle, J.: Towards robust and efficient planning execution. Eng. Appl. Artif. Intell. 21(3), 304–314 (2008)

    Article  Google Scholar 

  48. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Distributed covering by ant-robots using evaporating traces. IEEE Trans. Robot. Autom. 15(5), 918–933 (1995)

    Article  Google Scholar 

  49. Wago system, innovative connections. http://www.wago.com 2007

  50. White, T.: Expert assessment of stigmergy: a report for the Department of National Defence, Carleton Univ Ottawa (2005)

  51. Wilensky, U.: Center for Connected Learning and Computer-Based Modeling. Northwestern University. Evanston, IL (1999). http://ccl.northwestern.edu/netlogo/

    Google Scholar 

  52. Wong, T.N., Leung, C.W., Mak, K.L., Fung, R.Y.K.: Dynamic shopfloor scheduling in multi-agent manufacturing systems. Expert Syst. Appl. 31, 486–494 (2006)

    Article  Google Scholar 

  53. Wyns, J.: Reference architecture for holonic manufacturing systems—the key to support evolution and reconfiguration. PhD thesis K.U. Leuven (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Berger.

Additional information

This paper is in memory of Prof Noël Malvache, his convivial and inquisitive spirit continues to inspire us all.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, T., Sallez, Y., Valli, B. et al. Semi-heterarchical Allocation and Routing Processes in FMS Control: A Stigmergic Approach. J Intell Robot Syst 58, 17–45 (2010). https://doi.org/10.1007/s10846-009-9343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-009-9343-9

Keywords

Navigation