Skip to main content
Log in

Exploration of 2D and 3D Environments using Voronoi Transform and Fast Marching Method

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Robot navigation in unknown environments requires an efficient exploration method. Exploration involves not only to determine towards the robot must to move but also motion planning, and simultaneous localization and mapping processes. The final goal of the exploration task is to build a map of the environment that previously the robot didn’t know. This work proposes the Voronoi Fast Marching method, that uses a Fast Marching technique on the Logarithm of the Extended Voronoi Transform of the environment’s image provided by sensors, to determine a motion plan. The Logarithm of the Extended Voronoi Transform imitates the repulsive electric potential from walls and obstacles, and the Fast Marching Method propagates a wave over that potential map. The trajectory is calculated by the gradient method. The robot is directed towards the most unexplored and free zones of the environment so as to be able to explore all the workspace. Finally, to build the environment map while the robot is carrying out the exploration task, a SLAM (Simultaneous Localization and Modelling)algorithm is implemented, the Evolutive Localization Filter (ELF) based on a differential evolution technique. The combination of these methods provide a new autonomous exploration strategy to construct consistent maps of 2D and 3D indoor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borenstein, J., Koren, Y.: Histogramic in-motion mapping for mobile robot obstacle avoidance. IEEE J. Robot. 7(4), 535–539 (1991)

    Google Scholar 

  2. Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear time euclidean distance transform algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 17(5), 529–533 (1995)

    Article  Google Scholar 

  3. Covello, P., Rodrigue, G.: A generalized front marching algorithm for the solution of the eikonal equation. J. Comput. Appl. Math. 156(2), 371–388 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Elfes, A.: Sonar-based real world mapping and navigation. IEEE J. Robot. Automat. 3(3), 249–265 (1987)

    Article  Google Scholar 

  5. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Comput. Mag. 22(6), 46–57 (1989)

    Google Scholar 

  6. Feder, H.S., Leonard, J.J., Smith, C.M.: Adaptive mobile robot navigation and mapping. Int. J. Rob. Res. 7(18), 650–668 (1999)

    Article  Google Scholar 

  7. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1997)

    Article  Google Scholar 

  8. Garrido, S., Moreno, L., Blanco, D.: Voronoi diagram and Fast Marching applied to path planning. In: 2006 IEEE International Conference on Robotics and Automation, ICRA, pp. 3049–3054. IEEE, Piscataway (2006)

    Chapter  Google Scholar 

  9. Garrido, S., Moreno, L., Abderrahim, M., Martin, F.: Path planning for mobile robot navigation using Voronoi diagram and fast marching. In: Proc of IROS’06, pp. 2376–2381, Beijing, October 2006

  10. Howard, A., Kitchen, L.: Generating sonar maps in highly specular environments. In: Proceedings of the Fourth International Conference on Control, Automation, Robotics and Vision (1996)

  11. Khatib, M., Chatila, R.: An extended potential field approach for mobile robot sensor-based motions. In: Proceedings of the IEEE Int. Conf. on Intelligent Autonomus Systems (1995)

  12. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings of the IEEE Int. Conf. on Robotics and Automation, pp. 1398–1404 (2004)

  13. Kuipers, B.: Navigation and mapping in large-scale space. AI Mag. 9, 25–43 (1988)

    Google Scholar 

  14. Kuipers, Y.B.B.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robot. Auton. Syst. 8, 47–63 (1991)

    Article  Google Scholar 

  15. Latombe, J.-C.: Robot Motion Planning. Kluwer, Dordrecht (1991)

    Google Scholar 

  16. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  17. Lee, W.: Spatial semantic hierarchy for a physical robot. Ph.D. dissertation, Department of Computer Sciences, The University of Texas (1996)

  18. Lindemann, S.R., LaValle, S.M.: Simple and efficient algorithms for computing smooth, collision-free feedback laws. Int. J. Rob. Res. (in press)

  19. Lindemann, S.R., LaValle, S.M.: Smooth feedback for car-like vehicles in polygonal environments. In: Proceedings IEEE International Conference on Robotics and Automation (2007)

  20. Mataric, M.: Integration of representation into goal-driven behavior-based robots. IEEE Trans. Robot. Autom. 3, 304–312 (1992)

    Article  Google Scholar 

  21. Mauch, S.: Efficient algorithms for solving static hamilton-jacobi equations. Ph.D. dissertation, California Inst. of Technology (2003)

  22. Melchior, P., Orsoni, B., Laviale, O., Poty, A., Oustaloup, A.: Consideration of obstacle danger level in path planning using A* and Fast Marching optimisation: comparative study. J. Signal Process. 83(11), 2387–2396 (2003)

    Article  MATH  Google Scholar 

  23. Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings of the IEEE International Conference on Robotics and Automation (1985)

  24. Moreno, L., Garrido, S., Martin, F.: E-SLAM solution to the grid-based Localization and Mapping problem. In: 2007 IEEE International Symposium on Intelligent Signal Processing (WISP’2007), pp. 897–903, Alcala Henares 2007

  25. Oriolo, G., Venditteli, M., Ulivi, G.: On-line map-building and navigation for autonomous mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2900–2906 (1995)

  26. Oriolo, G., Ulivi, G., Vendittelli, M.: Fuzzy maps: a new tool for mobile robot perception and planning. J. Robot. Syst. 3(14), 179–197 (1997)

    Article  Google Scholar 

  27. Philippsen, R., Siegwart, R.: An interpolated dynamic navigation function. In: 2005 IEEE Int. Conf. on Robotics and Automation (2005)

  28. Poty, A., Melchior, P., Oustaloup, A.: Dynamic path planning by fractional potential. In: Second IEEE International Conference on Computational Cybernetics (2004)

  29. Silva, E.P., Engel, P., Trevisan, M., Idiart, M.: Exploration method using harmonic functions. J. Robot. Auton. Syst. 40(1), 25–42 (2002)

    Article  Google Scholar 

  30. Silva, E.P., Engel, P., Trevisan, M., Idiart, M.: Autonomous learning architecture for environmental mapping. J. Intell. Robot. Syst. 39, 243–263 (2004)

    Article  Google Scholar 

  31. Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., Lane, D.: Path planning for autonomous underwater vehicles. IEEE Trans. Robot. 23(2), 331–341 (2007)

    Article  Google Scholar 

  32. Quinlan, S., Khatib, O.: Elastic bands: connecting path planning and control. In: IEEE Int. Conf Robot and Autom, pp. 802–807 (1993)

  33. Quinlan, S., Khatib, O.: Efficient distance computation between nonconvex objects. In: IEEE Int. Conf Robot and Autom, pp. 3324–3329 (1994)

  34. Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)

    Article  Google Scholar 

  35. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966)

    Article  MATH  Google Scholar 

  36. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. U. S. A. 93(4), 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  37. Sethian, J.A.: Theory, Algorithms, and Aplications of Level Set Methods for Propagating Interfaces. Acta Numerica, pp. 309–395. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  38. Sethian, J.: Level Set Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  39. Thrun, S., Bücken, A.: Integrating grid-based and topological maps for mobile robot. In: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96), pp. 944–950 (1996)

  40. Thrun, S., Bücken, A.: Learning maps or indoor mobile robot navigation. CMU-CS-96-121, Tech. Rep., Carnegie Mellon University, Pittsburgh, PA (1996)

  41. Yamauchi, B.: A frontier-based exploration for autonomous exploration. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 146–151. Monterey, CA (1997)

  42. Yamauchi, B., Schultz, A., Adams, W., Graves, K.: Integrating map learning, localization and planning in a mobile robot. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 331–336. Gaithersburg, MD (1998)

  43. Yang, L., LaValle, S.M.: A framework for planning feedback motion strategies based on a random neighborhood graph. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 544–549 (2000)

  44. Yatziv, L., Bartesaghi, A., Sapiro, G.: A fast O(n) implementation of the fast marching algorithm. J. Comput. Phys. 212, 393–399 (2005)

    Article  Google Scholar 

  45. Zelek, J.: A framework for mobile robot concurrent path planning and execution in incomplete and uncertain environments. In: Proceedings of the AIPS-98 Workshop on Integrating Planning, Scheduling and Execution in Dynamic and Uncertain Environments. Pittsburgh, PA (1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Garrido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrido, S., Moreno, L. & Blanco, D. Exploration of 2D and 3D Environments using Voronoi Transform and Fast Marching Method. J Intell Robot Syst 55, 55–80 (2009). https://doi.org/10.1007/s10846-008-9293-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9293-7

Keywords

Navigation