Skip to main content
Log in

Active-Vision for the Autonomous Surveillance of Dynamic, Multi-Object Environments

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a novel method for active-vision-based sensing-system reconfiguration for the autonomous surveillance of an object-of-interest as it travels through a multi-object dynamic workspace with an a priori unknown trajectory. Several approaches have been previously proposed to address the problem of sensor selection and control. However, these have primarily relied on off-line planning methods and rarely utilized on-line planning to compensate for unexpected variations in a target’s trajectory. The method proposed in this paper, on the other hand, uses a multi-agent system for on-line sensing-system reconfiguration, eliminating the need for any a priori knowledge of the target’s trajectory. Thus, it is robust to unexpected variations in the environment. Simulations and experiments have shown that the use of dynamic sensors with the proposed on-line reconfiguration algorithm can tangibly improve the performance of an active-surveillance system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarabanis, K.A., Allen, P.K., Tsai, R.Y.: A survey of sensor planning in computer vision. IEEE Trans. Robot. Autom. 11(1), 86–104 (1995)

    Article  Google Scholar 

  2. Sakane, S., Sato, T., Kakikura, M.: Model-based planning of visual sensors using a hand-eye action simulator: HEAVEN. In: Espiau, B. (ed.) Proc. Conf. on Advanced Robotics, pp. 163–174. Versailles, France (1987)

    Google Scholar 

  3. Tarbox, G.H., Gottschlich, S.N.: Planning for complete sensor coverage in inspection. Comput. Vis. Image Underst. 61(1), 84–111 (1995)

    Article  Google Scholar 

  4. Cowan, C.K., Kovesik, P.D.: Automated sensor placement from vision task requirements. IEEE Trans. Pattern Anal. Mach. Intell. 10(3), 407–416 (1988)

    Article  Google Scholar 

  5. Anderson, D.P.: Efficient algorithms for automatic viewer orientation. Trans. Comp. Graphics. 9(4), 407–413 (1985)

    Article  Google Scholar 

  6. Zhang, H.: Two-dimensional optimal sensor placement. IEEE Trans. Syst. Man. Cybern. 25(5), 781–792 (1995)

    Article  Google Scholar 

  7. Trucco, E., Umasuthan, M., Wallace, A.M., Roberto, V.: Model-based planning of optimal sensor placements for inspection. IEEE Trans. Robot. Autom. 13(2), 182–194 (1997)

    Article  Google Scholar 

  8. Sheng, W., Xi, N., Song, M., Chen, Y.: CAD-guided sensor planning for dimensional inspection in automotive manufacturing. IEEE-ASME Trans. Mechatron. 8(3), 372–380 (2003)

    Article  Google Scholar 

  9. Niepold, R., Sakane, S., Shirai, Y.: Vision sensor set-up planning for a hand-eye system using environmental models. In: Proceedings of the Society of Instrument and Control Engineers of Japan, vol. 7(1), pp. 1037–1040. Hiroshima, Japan, July (1987)

  10. Matsuyama, T., Wada, T., Tokai, S.: Active image capturing and dynamic scene visualization by cooperative distributed vision. In: Nishio, S., Kishino, F. (eds.) Advanced Multimedia Content Processing, vol. 11(4), pp. 252–288. Springer, Berlin (1999)

    Chapter  Google Scholar 

  11. Horling, B., Vincent, R., Shen, J., Becker, R., Rawlins, K., Lesser, V.: SPT distributed sensor network for real-time tracking. Technical Report 00-49. University of Massachusetts, Amherst, MA (2000)

    Google Scholar 

  12. Spletzer, J.R., Taylor, C.J.: Dynamic sensor planning and control for optimally tracking targets. Int. J. Rob. Res. 22(1), 7–20 (2003)

    Article  Google Scholar 

  13. Kamel, M., Hodge, L.: A coordination mechanism for model-based multi-sensor planning. In: Proceedings of the IEEE International Symposium on Intelligent Control, pp. 1143–1149. Vancouver, Canada (2002)

  14. Zhou, H., Sakane, S.: Sensor planning for mobile robot localization using Bayesian network inference. J. Adv. Rob. 16(8), 751–771 (2002)

    Article  Google Scholar 

  15. Tsai, R.Y., Tarabanis, K.: Model-based planning of sensor placements and optical settings. In: Sensor Fusion II: Human and Mach. Strategies, pp. 936–944. Philadelphia, PA (1989)

  16. Tsai, R.Y., Tarabanis, K.: Occlusion-free sensor placement planning. In: Freeman, H. (ed.) Machine Vision for Three Dimensional Scenes, pp. 349–356. Academic, Orlando, FL (1990)

    Google Scholar 

  17. Goodridge, S.G., Kay, M.G.: Multimedia sensor fusion for intelligent camera control. In: Proc. of IEEE/SICE/RSJ Multi-sensor Fusion and Integration for Intelligent Systems, pp. 934–940. Washington, D.C. (1996)

  18. Merchand, E., Hager, G.D.: Dynamic sensor planning in visual servoing. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 1988–1993. Leuven, Belgium (1998)

  19. Farag, A.A., Abdel-Hakim, A.E.: Image content-based active sensor planning for a mobile trinocular active vision system. In: International Conference on Image Processing (ICP04), pp. 2913–2916, Oct (2004)

  20. Chen, S.Y., Li, Y.F.: Automatic sensor placement for model-based robot vision. IEEE Trans. Syst. Man. Cybern. B 34(1), 393–408 (2004)

    Article  Google Scholar 

  21. Isler, V., Bajcsy, R.: The sensor selection problem for bounded uncertainty sensing models. In: Proc. of the 4th Intl. Symposium on Information Processing in Sensor Networks. Information Processing in Sensor Networks, vol. 20, pp. 151–158. IEEE Press, Piscataway, NJ (2005)

    Google Scholar 

  22. Tang, Z., Ozguner, U.: Motion planning for multi-target surveillance with mobile sensor agents. IEEE Trans. Robot. 21(5), 898–908 (2005)

    Article  Google Scholar 

  23. Rekleitis, I., Meger, D., Dudek, G.: Simultaneous planning, localization, and mapping in a camera sensor network. Robot. Auton. Syst. 54(11), 921–932 (2006)

    Article  Google Scholar 

  24. Ukita, N., Matsuyama, T.: Real-time cooperative multi-target tracking by communicating active vision agents. In: Proc. of the Int. Conf. on Information Fusion, pp. 439–446. Queensland, Australia (2003)

  25. Cook, D.J., Gmytrasiewicz, P., Holder, L.B.: Decision-theoretic cooperative sensor planning. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 1013–1023, Oct (1996)

    Article  Google Scholar 

  26. Cook, D.: Reconfiguration of multi-agent planning systems. In: Proc. Artificial Intelligence Planning Systems, pp. 225–230 (1994)

  27. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Upper Saddle River, NJ, Prentice Hall (2003)

    Google Scholar 

  28. Tsai, R.: A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987)

    Article  Google Scholar 

  29. Bakhtari, A., Eskandari, M., Naish, M.D., Benhabib, B.: A multi-sensor surveillance system for active-vision based object localization. IEEE, Conf. System, Man and Cybernetics, pp. 1013–1018. Washington, DC, October (2003)

  30. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(4), 35–45 (1961)

    Google Scholar 

  31. Brooks, R., Iyengar, S.S.: Multi-sensor fusion: Fundamentals and applications with software. Prentice Hall, Englewood Cliffs, NJ (1998)

    Google Scholar 

  32. Marzullo, K.: Tolerating failures of continuous-valued sensors. ACM Trans. Comput. Syst. 8(4), 284–304 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Mackay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhtari, A., Mackay, M. & Benhabib, B. Active-Vision for the Autonomous Surveillance of Dynamic, Multi-Object Environments. J Intell Robot Syst 54, 567–593 (2009). https://doi.org/10.1007/s10846-008-9247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9247-0

Keywords

Mathematics Subject Classifications (2000)

Navigation