Skip to main content
Log in

Adaptive Dynamic Clustered Particle Filtering for Mobile Robots Global Localization

  • Unmanned Systems Paper
  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This article presents an adaptive dynamic clustered particle filtering method for mobile robot global localization. The posterior distribution of robot pose in global localization is usually multimodal due to the symmetry of the environment and ambiguous detected features. Moreover, the multimodal distribution of the posterior varies as the robot moves and observations be obtained. Considering these characteristics, we use a set of clusters of particles to represent the posterior. These clusters are dynamically evolved corresponding to the varying posterior by merging the overlapping clusters and splitting the diffuse clusters or those whose particles gather to some sub-clusters inside. Further, in order to improve computational efficiency without sacrificing estimation accuracy, a mechanism for adapting the sample size of clusters is proposed. The theoretical lower bound of the number of particles needed to limit the estimation error is derived, based on the central limit theorem in multi-dimensional space and the statistic theory of Importance Sampling. Then, a method for tuning the sample size for each cluster according to the derived lower bound is presented. Experiment results show the effectiveness of the proposed method, which is sufficient to achieve robust tracking of robot’s real pose and meanwhile significantly enhance the computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jensfelt, P., Kristensen, S.: Active global localisation for a mobile robot using multiple hypothesis tracking. IEEE Trans. Robot. Autom. 17, (5), 748–760 (2001)

    Article  Google Scholar 

  2. Arras, K., Castellanos, J.A., Siegwart, R.: Feature-based multi-hypothesis localization and tracking for mobile robots using geometric constraints. Proc. IEEE ICRA 2, 1371–1377 (2002)

    Google Scholar 

  3. Austin, D.J., Jensfelt, P.: Using multiple Gaussian hypotheses to represent probability distributions for mobile robot localization. Proc. IEEE ICRA 2, 1036–1041 (2000)

    Google Scholar 

  4. Burgard, W., Fox, D., Henning, D., Schmidt, T.: Estimating the absolute position of a mobile robot using position probability grids. In: Proceedings of the National Conference on Artificial Intelligence (AAAI-96), Portland, USA, pp. 896–901 (1996)

  5. Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environments. J. Artif. Intell. Res. 11, 391–427 (1999)

    MATH  Google Scholar 

  6. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile robots. Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1322–1328. IEEE, Michigan (1999)

    Google Scholar 

  7. Jensfelt, P., Wijk, O., Austin, D.J., Andersson, M.: Experiments on augmenting condensation for mobile robot localization. Proc. IEEE ICRA 3, 2518–2524 (2000)

    Google Scholar 

  8. Fox, D., Burgard, W., Dellaert, F.: Monte Carlo localization: efficient position estimation for mobile robots. In: Proceedings of the 16th National Conf on Artificial Intelligence (AAAI-99), pp. 343–349. Robotics Institute, Pittsburgh (1999)

    Google Scholar 

  9. Thrun, S., Fox, D., Burgard, W. et al.: Robust Monte Carlo localization for mobile robots. Artif. Intell. 128, (1), 99–141 (2001)

    Article  MATH  Google Scholar 

  10. George, D., Barnes, N.: Particle attraction localisation. Proc. Int. Conf. Intel. Robot Syst 2, 1240–1245 (2003)

    Google Scholar 

  11. Zhang, B., Tian, W., Jin, Z.: Head tracking based on the integration of two different particle filters. Meas. Sci. Technol. 17, (11), 2877–2883 (2006)

    Article  Google Scholar 

  12. Fox, D.: KLD-sampling: Adaptive particle filters. Adv. Neural. Inform. Proces. Syst. 14, 713–720 (2002)

    Google Scholar 

  13. Fox, D.: Adapting the sample size in particle filters through KLD-sampling. Int. J. Robot. Res. 22, (12), 985–1003 (2003)

    Article  Google Scholar 

  14. Soto, A.: Self adaptive particle filter. In: Proceedings of International Joint Conferences on Artificial Intelligence (IJCAI-05), Edinburgh, Scotland, pp. 1398–1406 (2005)

  15. Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. Proc. IEEE ICRA. pp. 2443–2448 (2005)

  16. Stachniss, C., Grisetti, G., Burgard, W.: Recovering particle diversity in a Rao-Blackwellized particle filter for SLAM after actively closing loops. Proc. IEEE ICRA. pp. 667–672 (2005)

  17. Milstein, A., Sanchez, J.N., Williamson, E.T.: Robust global localization using clustered particle filtering. In: Proceedings of 18th National Conference on Artificial Intelligence AAAI-02, Edmonton, pp. 581–586 (2002)

  18. Geweke, J.: Bayesian inference in econometric models using Monte Carlo Integration. Econometrica. 57, (6), 1317–1339 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, J.S., Chen, R.: Blind deconvolution via sequential imputations. J. Am. Stat. Assoc. 90, (430), 567–576 (1995)

    Article  MATH  Google Scholar 

  20. Doucet, A., et al.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, (3), 197–208 (2000)

    Article  MathSciNet  Google Scholar 

  21. Yang, T., Aitken, V.: Uniform clustered particle filtering for robot localization. Proc. Am. Control Conf 7, 4607–4612 (2005)

    Article  Google Scholar 

  22. Roumeliotis, S.I., Bekey, G.A.: Distributed multirobot localization. IEEE Trans. Robot. Autom. 18, (5), 781–794 (2002)

    Article  Google Scholar 

  23. Schmitt, T., Hanek, R., Beetz, M., Buck, S., Radig, B.: Cooperative probabilistic state estimation for vision-based autonomous mobile robots. IEEE Trans. Robot. Autom. 18, (5), 670–684 (2002)

    Article  Google Scholar 

  24. Menegatti, E., Pretto, A., Scarpa, A., Pagello, E.: Omnidirectional vision scan matching for robot localization in dynamic environments. IEEE Trans. Robot. 22, (3), 523–535 (2006)

    Article  Google Scholar 

  25. Röfer, T., Laue, T., Burkhard, H., Stryk, O., Schwiegelshohn, U. et al.: GermanTeam RoboCup 2005, Technical report (2005). Available online: http://www.germanteam.org/GT2005.pdf

  26. Hoffmann, J., Spranger, M., Göhring, D., Jüngel, M.: Negative information and proprioception in Monte Carlo self-localization for a 4-legged robots. In: Nineteenth International Joint Conference on Artificial Intelligence (IJCAI) Workshop on Agents in Real-Time and Dynamic Environments, Edinburgh, Scotland (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Shi, Z., Zhao, M. et al. Adaptive Dynamic Clustered Particle Filtering for Mobile Robots Global Localization. J Intell Robot Syst 53, 57–85 (2008). https://doi.org/10.1007/s10846-008-9229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9229-2

Keywords

Navigation