Skip to main content
Log in

Monitoring mechanisms in new product development with risk-averse project manager

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

It is necessary for one senior executive (she) to monitor her project manager (he) who conducts early research stage followed by a later development stage in new product development. In this paper, we analyze two monitoring mechanisms: (1) the idea information-based monitoring (IM) mechanism wherein the senior executive engages one supervisor to monitor the project manager’s idea information; (2) the effort-based monitoring (EM) mechanism wherein the senior executive engages another supervisor to monitor the project manager’s effort. Within the framework of uncertainty theory, we first present two classes of bilevel uncertain principal-agent monitoring models, and then derive their respective optimal incentive contracts. We find that the senior executive should set the incentive term as high as possible to motivate each supervisor to monitor the project manager’s idea information and effort no matter how much the design idea value is. We also find that EM mechanism can always dominate IM mechanism when the monitoring costs are equal. Moreover, comparing with a no monitoring scenario, we identify two values of monitoring: the value of monitoring idea information and the value of monitoring effort. Our results show that adopting IM and EM mechanisms can improve the senior executive’s profits obtained in the no monitoring scenario when the revenue uncertainty is sufficiently low. The results also indicate that the value of monitoring idea information decreases as the risk aversion level of the project manager improves, while the value of monitoring effort shows the opposite feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Buyukozkan, G., Dereli, T., & Baykasoglu, A. (2004). A survey on the methods and tools of concurrent new product development and agile manufacturing. Journal of Intelligent Manufacturing, 15(6), 731–751.

    Article  Google Scholar 

  • Chao, R., Lichtendahl, K., & Grushka-Cockayne, Y. (2014). Incentives in a stage-gate process. Production and Operations Management, 23(8), 1286–1298.

    Article  Google Scholar 

  • Casas, E., Mateos, M., & Raymond, J. P. (2001). Pontryagin’s principle for the control of parabolic equations with gradient state constraints. Nonlinear Analysis, 46(7), 933–956.

    Article  Google Scholar 

  • Che, Y. (1993). Design competition through multidimensional auctions. The Rand Journal of Economics, 24(4), 668–680.

    Article  Google Scholar 

  • Che, Y., & Yoo, S. (2001). Optimal incentives for teams. The American Economic Review, 91(3), 525–541.

    Article  Google Scholar 

  • Corbett, C., Zhou, D., & Tang, C. (2004). Designing supply contracts: Contract type and information asymmetry. Management Science, 50(4), 550–559.

    Article  Google Scholar 

  • Demski, J., & Sappington, D. (1984). Optimal incentive contracts with multiple agents. Journal of Economic Theory, 33(1), 152–171.

    Article  Google Scholar 

  • Feng, J., Lan, Y., & Zhao, R. (2014). Regulating a firm under adverse selection and moral hazard in uncertain environment. Abstract and Applied Analysis, 2014, 12.

  • Gao, X., Gao, Y., & Relascu, D. A. (2010). On Liu’s inference rule for uncertain systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18(1), 1–11.

    Article  Google Scholar 

  • Holmstrom, B. (1982). Moral hazard in teams. The Bell Journal of Economics, 13(2), 324–340.

    Article  Google Scholar 

  • Itoh, H. (1991). Incentives to help in multi-agent situations. Econometrica, 59(3), 611–636.

    Article  Google Scholar 

  • Jiao, J., Simpson, T., & Siddique, Z. (2007). Product family design and platform-based product development: a state-of-the-art review. Journal of Intelligent Manufacturing, 18(1), 5–29.

    Article  Google Scholar 

  • Krishnan, V., & Ulrich, K. T. (2001). Product development decisions: A review of the literature. Management Science, 47(1), 1–21.

    Article  Google Scholar 

  • Li, X., & Liu, B. (2009a). Foundation of credibilistic logic. Fuzzy Optimization and Decision Making, 8(1), 91–102.

    Article  Google Scholar 

  • Li, X., & Liu, B. (2009b). Hybrid logic and uncertain logic. Journal of Uncertain Systems, 3(2), 83–94.

    Google Scholar 

  • Li, X., & Wong, S. (2010). Credibilistic satisfiability and credibilistic entailment. Journal of Multi-Valued Logic and Soft Computing, 16(1–2), 105–134.

    Google Scholar 

  • Lim, W. S. (2001). Producer-supplier contracts with incomplete information. Management Science, 47(5), 709–715.

    Article  Google Scholar 

  • Liu, B. (2007). Uncertainty theory (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Liu, B. (2009). Some research problems in uncertainty theory. Journal of Uncertain Systems, 3(1), 3–10.

    Google Scholar 

  • Liu, B. (2010a). Uncertain set theory and uncertain inference rule with application to uncertain control. Journal of Uncertain Systems, 4(2), 83–98.

    Google Scholar 

  • Liu, B. (2010b). Uncertain risk analysis and uncertain reliability analysis. Journal of Uncertain Systems, 4(3), 163–170.

    Google Scholar 

  • Liu, B. (2010c). Uncertainty theory: A branch of mathematics for modeling human uncertainty. Berlin: Springer.

    Book  Google Scholar 

  • Liu, B. (2011). Uncertain logic for modeling human language. Journal of Uncertain Systems, 5(1), 3–20.

    Google Scholar 

  • Liu, B. (2013). Polyrectangular theorem and independence of uncertain vectors. Journal of Uncertainty Analysis and Applications, 1, 9.

    Article  Google Scholar 

  • Liu, B. (2014). Uncertain random graph and uncertain random network. Journal of Uncertain Systems, 8(2), 3–12.

    Google Scholar 

  • Liu, Y. (2013). Uncertain random variables: A mixture of uncertainty and randomness. Soft Computing, 17(4), 625–634.

    Article  Google Scholar 

  • Liu, Y., & Ha, M. (2010). Expected value of function of uncertain variables. Journal of Uncertain Systems, 4(3), 181–186.

    Google Scholar 

  • McAfee, R. P., & McMillan, J. (1991). Optimal contracts for teams. International Economic Review, 32(3), 561–577.

    Article  Google Scholar 

  • Mihm, J. (2010). Incentives in new product development projects and the role of target costing. Management Science, 56(8), 1324–1344.

    Article  Google Scholar 

  • Mookherjee, D. (1984). Optimal incentive schemes with many agents. Review of Economic Studies, 51(3), 433–446.

    Article  Google Scholar 

  • Mu, R., Lan, Y., & Tang, W. (2013). An uncertain contract model for rural migrant worker’s employment problems. Fuzzy Optimization and Decision Making, 12(1), 29–39.

    Article  Google Scholar 

  • Myerson, R. B. (1981). Incentive compatibility and the bargaining problem. Econometrica, 47(1), 61–74.

    Article  Google Scholar 

  • Peng, J., & Yao, K. (2011). A new option pricing model for stocks in uncertainty markets. International Journal of Operations Research, 8(2), 18–26.

    Google Scholar 

  • Sheng, Y., & Yao, K. (2014). Some formulas of variance of uncertain random variable. Journal of Uncertainty Analysis and Applications, 2, 12.

    Article  Google Scholar 

  • Wang, G., Tang, W., & Zhao, R. (2013). An uncertain price discrimination model in labor market. Soft Computing, 17(4), 579–585.

    Article  Google Scholar 

  • Wang, X., Lan, Y., & Wang, J. (2014). An uncertain wage contract model with adverse selection and moral hazard. Journal of Applied Mathematics, 2014, 9.

  • Wu, X., Zhao, R., & Tang, W. (2013). Uncertain agency models with multi-dimensional incomplete information based on confidence level. Fuzzy Optimization and Decision Making, 13(2), 231–258.

    Article  Google Scholar 

  • Xiao, W., & Xu, Y. (2012). The impact of royalty contract revision in a multi-stage strategic R&D alliance. Management Science, 58(12), 2251–2271.

    Article  Google Scholar 

  • Yang, K., Liu, Y., & Yang, G. (2014). Optimizing fuzzy \(p\)-hub center problem with generalized value-at-risk criterion. Applied Mathematical Modelling, 38(15–16), 3987–4005.

    Article  Google Scholar 

  • Yang, K., & Liu, Y. (2014). Developing equilibrium optimization methods for hub location problems. Soft Computing,. doi:10.1007/s00500-014-1427-1.

    Google Scholar 

  • Yang, K., Zhao, R., & Lan, Y. (2014). The impact of risk attitude in new product development under dual information asymmetry. Computers and Industrial Engineering, 76(10), 122–137.

    Article  Google Scholar 

  • Yang, L., Liu, P., Li, S., Gao, Y., & Ralescu, D. (2015). Reduction methods of type-2 uncertain variables and their applications to solid transportation problem. Information Sciences, 291, 204–237.

    Article  Google Scholar 

  • Yang, X., & Gao, J. (2013). Uncertain differential games with application to capitalism. Journal of Uncertainty Analysis and Applications, 1, 17.

  • Yang, X., & Gao, J. (2014). Uncertain core for coalitional game with uncertain payoffs. Journal of Uncertain Systems, 8(2), 13–21.

    Google Scholar 

  • Zhu, Y. (2010). Uncertain optimal control with application to a portfolio selection model. Cybernetics and Systems, 41(7), 535–547.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 71271151, 71301114 and 71471126 and the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20130032110015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Lan.

Appendices

Appendix A. Preliminaries on uncertainty theory

Let \(\Gamma \) be a nonempty set, and \(\mathcal {L}\) a \(\sigma \)-algebra over \(\Gamma \). Each element \(\Lambda \) in \(\mathcal {L}\) is called an event. Liu (2007) defined an uncertain measure by the following axioms:

Axiom 1

(Normality Axiom) \(\mathcal {M}\{\Gamma \}=1\) for the universal set \(\Gamma \).

Axiom 2

(Duality Axiom) \(\mathcal {M}\{\Lambda \}+\mathcal {M}\{\Lambda ^{c}\}=1\) for any event \(\Lambda \).

Axiom 3

(Subadditivity Axiom) For every countable sequence of events \(\Lambda _{1},\Lambda _{2},\cdots \), we have

$$\begin{aligned} \mathcal {M}\left\{ \bigcup _{i=1}^{\infty }\Lambda _{i} \right\} \le {\sum _{i=1}^{\infty }}\mathcal {M}\{\Lambda _{i}\}. \end{aligned}$$

The triplet \((\Gamma ,\mathcal {L},\mathcal {M})\) is called an uncertainty space. Furthermore, Liu (2009) defined a product uncertain measure by the fourth axiom:

Axiom 4

(Product Axiom) Let \((\Gamma _{k},\mathcal {L}_{k},\mathcal {M}_{k})\) be uncertainty space for \(k=1,2,\cdots \). The product uncertain measure \(\mathcal {M}\) is an uncertain measure satisfying

$$\begin{aligned} \mathcal {M}\left\{ \prod _{k=1}^{\infty }\Lambda _{i} \right\} = {\bigwedge _{k=1}^{\infty }}\mathcal {M}\{\Lambda _{k}\} \end{aligned}$$

where \(\Lambda _{k}\) are arbitrarily chosen events from \(\mathcal {L}_{k}\) for \(k=1,2,\cdots \), respectively.

Definition 1

(Liu 2007) An uncertain variable is a measurable function \(\xi \) from an uncertainty space \((\Gamma ,\mathcal {L},\mathcal {M})\) to the set of real numbers, i.e., for any Borel set \(\mathcal {B}\) of real numbers, the set

$$\begin{aligned}\{\xi \in \mathcal {B}\}=\{\gamma \in \Gamma |\xi (\gamma )\in \mathcal {B}\} \end{aligned}$$

is an event.

Definition 2

(Liu 2007) The uncertainty distribution \(\Phi \) of an uncertain variable \(\xi \) is defined by

$$\begin{aligned} \Phi (x)=\mathcal {M}\{\xi \le x\} \end{aligned}$$

for any real number \(x\).

Definition 3

(Liu 2010c) An uncertainty distribution \(\mathrm{\Phi (x)}\) is said to be regular if it is a continuous and strictly increasing function with respect to \(x\) at which \(0<\Phi (x)<1\), and

$$\begin{aligned} \lim _{x\rightarrow -\infty }\Phi (x)=0,\ \ \lim _{x\rightarrow +\infty }\Phi (x)=1. \end{aligned}$$

Definition 4

(Liu 2010c) Let \(\xi \) be an uncertain variable with regular uncertainty distribution \(\Phi \). Then the inverse function \(\Phi ^{-1}(\alpha )\) is called the inverse uncertainty distribution of \(\xi \).

Definition 5

(Liu 2007) Let \(\xi \) be an uncertain variable. Then the expected value of \(\xi \) is defined by

$$\begin{aligned} E[\xi ]=\int _{0}^{+\infty }\mathcal {M}\{\xi \ge x\}\text{ d }x-\int _{-\infty }^{0}\mathcal {M}\{\xi \le x\}\text{ d }x \end{aligned}$$

provided that at least one of the two integrals is finite. If \(\xi \) has an uncertainty distribution \(\Phi \), then the expected value may be calculated by

$$\begin{aligned} E[\xi ]=\int _{0}^{+\infty }(1-\Phi (x))\text{ d }x-\int _{-\infty }^{0}\Phi (x)\text{ d }x \end{aligned}$$

or equivalently,

$$\begin{aligned} E[\xi ]=\int _{-\infty }^{+\infty }x\text{ d }\Phi (x). \end{aligned}$$

If \(\Phi \) is also regular, then

$$\begin{aligned} E[\xi ]=\int _{0}^{1}\Phi ^{-1}(\alpha )\text{ d }\alpha . \end{aligned}$$

Definition 6

(Liu 2007) Let \(\xi \) be an uncertain variable with finite expected value \(e\). Then the variance of \(\xi \) is

$$\begin{aligned} V[\xi ]=E[(\xi -e)^{2}]. \end{aligned}$$

This definition tells us that the variance is just the expected value of \((\xi -e)^{2}\). Since \((\xi -e)^{2}\) is a nonnegative uncertain variable, we also have

$$\begin{aligned} V[\xi ]=\int _{0}^{+\infty }\mathcal {M}\{(\xi -e)^{2}\ge x\}\text{ d }x. \end{aligned}$$

Definition 7

(Liu 2009) The uncertain variables \(\xi _{1},\xi _{2},\ldots ,\xi _{m}\) are said to be independent if

$$\begin{aligned} \mathcal {M}\left\{ \bigcap _{i=1}^{m}(\xi _{i}\in \mathcal {B}_{i}) \right\} = {\bigwedge _{i=1}^{m}}\mathcal {M}\{\xi _{i}\in \mathcal {B}_{i}\}, \end{aligned}$$

for any Borel sets \(\mathcal {B}_{1},\mathcal {B}_{2},\ldots ,\mathcal {B}_{m}\) of real numbers. More generally, the independence of uncertain vectors was given by Liu (2013).

Theorem 1

(Liu 2010c) Let \(\xi _{1},\xi _{2},\ldots ,\xi _{n}\) be independent uncertain variables with regular uncertainty distributions \(\Phi _{1},\Phi _{2},\ldots ,\Phi _{n}\) respectively. If the function \(f(x_{1},x_{2},\ldots ,x_{n})\) is strictly increasing with respect to \(x_{1},x_{2},\ldots ,x_{m}\) and strictly decreasing with respect to \(x_{m+1},x_{m+2},\ldots ,x_{n}\), then

$$\begin{aligned} \xi =f(\xi _{1},\xi _{2},\ldots ,\xi _{n}) \end{aligned}$$

is an uncertain variable with an inverse uncertainty distribution

$$\begin{aligned}&\Phi ^{-1}(\alpha )=f(\Phi _{1}^{-1}(\alpha ),\ldots ,\Phi _{m}^{-1}(\alpha ),\\&\quad \Phi _{m+1}^{-1}(1-\alpha ),\ldots ,\Phi _{n}^{-1}(1-\alpha )). \end{aligned}$$

Theorem 2

(Liu 2007) If \(\xi \) is an uncertain variable with finite expected value, \(a\) and \(b\) are real numbers, then

$$\begin{aligned} V[a\xi +b]=a^{2}V[\xi ]. \end{aligned}$$

Theorem 3

(Liu and Ha 2010) Let \(\xi \) be an uncertain variable with regular uncertainty distribution \(\Phi \), and let \(g(x)\) be a strictly monotone (increasing or decreasing) function, then the expected value of \(g(\xi )\) is

$$\begin{aligned} E[g(\xi )]={\int _{-\infty }^{+\infty }}g(x)\text{ d }\Phi (x). \end{aligned}$$

Appendix B. Proofs of propositions and lemmas

Proof of Lemma 1

For parts (i) and (ii), by Theorems 1 and 2, we firstly simplify \(\mathrm MV _\mathrm{N }(x,y)\), which denotes the project manager with idea value \(x\) but choosing the pair \((\alpha _\mathrm{N }(y),\beta _\mathrm{N }(y)\), where \(x,y\in [\underline{\theta },\overline{\theta }]\) and \(x\ne y\),

$$\begin{aligned} \mathrm MV _\mathrm{N }(x,y)\!&= \max \limits _{\hat{e}_\mathrm{N }} \Bigg \{\alpha _\mathrm{N }(y)+\beta _\mathrm{N }(y) (x+v\hat{e}_\mathrm{N })\nonumber \\&\quad -\frac{1}{2}\hat{e}_\mathrm{N }^{2} -\frac{1}{2}\rho \sigma ^{2}\beta _\mathrm{N }^{2}(y)\Bigg \}\nonumber \\&= \alpha _\mathrm{N }(y)+x\beta _\mathrm{N }(y) +\frac{1}{2}(v^{2}-\rho \sigma ^{2})\beta _\mathrm{N }^{2}(y), \end{aligned}$$

where the second equality follows from the first-order condition for the optimal development effort: \(e^{*}_\mathrm{N }=v\beta _\mathrm{N }(y)\).

Thus, for any given \(x\), the incentive compatibility constraint can be written as

$$\begin{aligned} \begin{array}{ll} \mathrm MV _\mathrm{N }(x)\ge \mathrm MV (x,y), \forall \ y\in [\underline{\theta },\overline{\theta }], \end{array} \end{aligned}$$

which means that \(\mathrm MV _\mathrm{N }(x,y)\) obtain its maximal value at \((x,x)\), i.e., a project manager with idea value \(x\) has no incentive to pretend to be a that with design idea value \(y\), \(x\ne y\). Thus, \(\mathrm MV _\mathrm{N }(x,y)\) satisfies the first-order condition \(\frac{\partial \mathrm MV _\mathrm{N }(x,y)}{\partial y}|_{y=x}=0\) and the second-order condition \(\frac{\partial ^{2} \mathrm MV _\mathrm{N }(x,y)}{\partial y^{2}}|_{y=x}<0\). It follows from the first-order condition that

$$\begin{aligned}&\frac{\text{ d }\alpha _\mathrm{N }(x)}{\text{ d }x}+\left( x+\frac{1}{2}(v^{2}-\rho \sigma ^{2})\beta _\mathrm{N }(x)\right) \frac{\text{ d }\beta _\mathrm{N }(x)}{\text{ d }x} =0,\nonumber \\&\quad \forall \ x\in [\underline{\theta },\overline{\theta }]. \end{aligned}$$
(14)

Differentiating (14) with respect to \(x\) yields

$$\begin{aligned}&\frac{\text{ d }^{2} \alpha _\mathrm{N }(x)}{\text{ d }x^{2}}+\frac{\text{ d }\beta _\mathrm{N }(x)}{\text{ d }x}+\frac{1}{2}(v^{2}-\rho \sigma ^{2})\left( \frac{\text{ d }\beta _\mathrm{N }(x)}{\text{ d }x}\right) ^{2}\nonumber \\&\quad +\left( x+\frac{1}{2}(v^{2}-\rho \sigma ^{2})\beta _\mathrm{N }(x)\right) \frac{\text{ d }^{2} \beta _\mathrm{N }(x)}{\text{ d }x^{2}}=0, \forall \ x\in [\underline{\theta },\overline{\theta }]. \end{aligned}$$
(15)

It follows from the second-order condition that

$$\begin{aligned}&\frac{\text{ d }^{2} \alpha _\mathrm{N }(x)}{\text{ d }x^{2}}+\frac{1}{2}(v^{2}-\rho \sigma ^{2})\left( \frac{\text{ d }\beta _\mathrm{N }(x)}{\text{ d }x}\right) ^{2}\nonumber \\&\quad +\left( x+\frac{1}{2}(v^{2}-\rho \sigma ^{2})\beta _\mathrm{N }(x)\right) \frac{\text{ d }^{2} \beta _\mathrm{N }(x)}{\text{ d }x^{2}}\le 0, \forall \ x\in [\underline{\theta },\overline{\theta }]. \end{aligned}$$
(16)

Applying (15) to (16) yields

$$\begin{aligned} \frac{\text{ d }\beta _\mathrm{N }(x)}{\text{ d }x}\ge 0, \forall \ x\in [\underline{\theta },\overline{\theta }]. \end{aligned}$$
(17)

On the other hand, by \(\frac{\text{ d }\beta _\mathrm{N }(x)}{\text{ d }x}\ge 0\) and integrating (14) yields

$$\begin{aligned}&\alpha _\mathrm{N }(x)-\alpha _\mathrm{N }(y)\\&\quad =- {\int _{y}^{x}}\left( s+\frac{1}{2}(v^{2}- \rho \sigma ^{2})\beta _\mathrm{N }(s)\right) \frac{\text{ d }\beta _\mathrm{N }(s)}{\text{ d }s}\text{ d }s\\&\quad \ge {\int _{x}^{y}}\left( x+\frac{1}{2}(v^{2}- \rho \sigma ^{2})\beta _\mathrm{N }(s)\right) \frac{\text{ d }\beta _\mathrm{N }(s)}{\text{ d }s}\text{ d }s\\&\quad =x\beta _\mathrm{N }(y)+\frac{1}{2}(v^{2}- \rho \sigma ^{2})\beta _\mathrm{N }^{2}(y)-x \beta _\mathrm{N }(x)\\&\qquad -\frac{1}{2}(v^{2}-\rho \sigma ^{2})\beta _\mathrm{N }^{2}(x) \end{aligned}$$

when \(x>y\); and

$$\begin{aligned}&\alpha _\mathrm{N }(y)-\alpha _\mathrm{N }(x)\\&\quad =- {\int _{x}^{y}}\left( s+\frac{1}{2}(v^{2}-\rho \sigma ^{2}) \beta _\mathrm{N }(s)\right) \frac{\text{ d }\beta _\mathrm{N }(s)}{\text{ d }s}\text{ d }s\\&\quad \le {\int _{y}^{x}}\left( s+\frac{1}{2}(v^{2}-\rho \sigma ^{2}) \beta _\mathrm{N }(s)\right) \frac{\text{ d }\beta _\mathrm{N }(s)}{\text{ d }s}\text{ d }s\\&\quad =x\beta _\mathrm{N }(x)+\frac{1}{2}(v^{2}-\rho \sigma ^{2}) \beta _\mathrm{N }^{2}(x)\\&\qquad -\,x\beta _\mathrm{N }(y)-\frac{1}{2}(v^{2} -\rho \sigma ^{2})\beta _\mathrm{N }^{2}(y) \end{aligned}$$

when \(y>x\).

By differentiating \(\mathrm MV _\mathrm{N }(x)\) with respect to \(x\), we have

$$\begin{aligned} \frac{\text{ d }\mathrm MV _\mathrm{N }(x)}{\text{ d }x}&= \frac{\text{ d }\alpha _\mathrm{N }(x)}{\text{ d }x}+\left( x+\frac{1}{2}(v^{2}-\rho \sigma ^{2})\beta _\mathrm{N }(x)\right) \\&\quad \times \frac{\text{ d }\beta _\mathrm{N }(x)}{\text{ d }x} +\beta _\mathrm{N }(x)=\beta _\mathrm{N }(x). \end{aligned}$$

For part (iii), according to \(\frac{\text{ d }\mathrm MV _\mathrm{N }(x)}{\text{ d }x}\ge 0\), the participation constraint is equivalent to

$$\begin{aligned} \mathrm MV _\mathrm{N }(\underline{\theta })\ge 0. \end{aligned}$$
(18)

In fact, the senior executive will set the wage for the lowest idea value as low as possible, so that \(\mathrm MV _\mathrm{N }(\underline{\theta })=0\). That is the constraint (18) is binding under the optimal wage contract. \(\square \)

Proof of Lemma 2

Noting with the definition of \(\mathrm MV _\mathrm{N }(x)\), we have

$$\begin{aligned}&E\left[ \Pi _{\mathrm{N}}\right] \\&\quad =E\left[ \theta -\mathrm{MV}_{\mathrm{N}}(\theta )+v^{2}\beta _{\mathrm{N}}(\theta )-\frac{1}{2}\left( v^{2}+\rho \sigma ^{2}\right) \beta _{\mathrm{N}}^{2}(\theta )\right] . \end{aligned}$$

Let \(G(x)=x-\mathrm{MV}_{\mathrm{N}}(x)+v^{2}\beta _{\mathrm{N}}-\frac{1}{2}\left( v^{2}+\rho \sigma ^{2}\right) \beta _{\mathrm{N}}^{2}(x)\). By differentiating \(G(x)\) with respect to \(x\),

$$\begin{aligned} \frac{\text{ d }G(x)}{\text{ d }x}=1-\beta _\mathrm{N }(x)+\left( v^{2}-\frac{1}{2}(v^{2} +\rho \sigma ^{2})\beta _\mathrm{N }(x)\right) \frac{\text{ d }\beta _\mathrm{N }(x)}{\text{ d }x}. \end{aligned}$$

It follows from \(\sigma ^{2}\le \frac{v^{2}}{\rho }\) and \(0\le \beta _\mathrm{N }(x)\le 1\) in Assumption that \(\frac{\text{ d }G(x)}{\text{ d }x}\ge 0\). According to Theorem 3, the senior executive’s expected profit can be written as

$$\begin{aligned} E\left[ \Pi _{\mathrm{N}}\right]&= \int _{\underline{\theta }}^{\overline{\theta }}\left( x-\mathrm{MV}_{\mathrm{N}}(x)+v^{2}\beta _{\mathrm{N}}\right. \nonumber \\&\quad \left. -\,\frac{1}{2}\left( v^{2}+\rho \sigma ^{2}\right) \beta _{\mathrm{N}}^{2}(x)\right) \phi (x)\text{ d }x. \end{aligned}$$

\(\square \)

Proof of Proposition  1

We relax the senior executive’s problem by ignoring the constraint that \(\frac{\text{ d }\beta _\mathrm{N }(x)}{\text{ d }x}\ge 0\). The Hamiltonian of the senior executive’s relaxed optimal control problem is

$$\begin{aligned}&H\left( \beta _\mathrm{N },\mathrm MV _\mathrm{N },\lambda ,x\right) \\&\quad =\left( x-\mathrm{MV}_{\mathrm{N}}+v^{2}\beta _{\mathrm{N}}-\frac{1}{2}\left( v^{2}+\rho \sigma ^{2}\right) \beta _{\mathrm{N}}^{2}\right) \phi (x)+\lambda \beta _\mathrm{N }. \end{aligned}$$

According to Pontryagin maximum principle, the necessary conditions are: (i) \(\frac{\partial H}{\partial \beta }=0\), (ii) \(\frac{\partial H}{\partial \mathrm MV _\mathrm{N }}=-\frac{\text{ d }\lambda }{\text{ d }x}\) and \(\lambda (\overline{\theta })=0\), (iii) \(\frac{\partial H}{\partial \lambda }=\frac{\text{ d }\mathrm MV _\mathrm{N }(x)}{\text{ d }x}\) and \(\mathrm MV _\mathrm{N }(\underline{\theta })=0\). From the transversality condition, we know \(\lambda (x)=\Phi (x)-1\). The optimal \(\beta _\mathrm{N }^{*}(x)\) follows directly from condition (i)

$$\begin{aligned} \left( v^{2}-\left( v^{2}+\rho \sigma ^{2}\right) \beta _{\mathrm{N}}^{*}(x)\right) \phi (x)+\Phi (x)-1=0. \end{aligned}$$

By simple calculation and the assumption \(\beta _{\mathrm{N}}(x)\ge 0\), we can obtain

$$\begin{aligned} \beta _{\mathrm{N}}^{*}(x)=\frac{\left( v^{2}-h(x)\right) ^{+}}{v^{2}+\rho \sigma ^{2}}. \end{aligned}$$

It is straightforward to verify that \(\frac{\text{ d }\beta _{\mathrm{N}}^{*}(x)}{\text{ d }x}\ge 0\), \(x\in [\underline{\theta },\overline{\theta }]\). Following the determinate optimal incentive coefficient \(\beta _{\mathrm{N}}^{*}(x)\), the optimal fixed payment \(\alpha _{\mathrm{N}}^{*}(x)\) and the optimal effort level \(e^{*}_{\mathrm{N}}\) for the project manager can be obtained immediately. Therefore, the proof of the proposition is complete. \(\square \)

Proof of Lemma 3

Substituting \(E\left[ \pi _\mathrm{I }(\alpha _\mathrm{I }(x),\beta _\mathrm{I }(x))\right] \) and \(\mathrm MV _\mathrm{I }(x)\), supervisor I’s problem \(P_{I}\) can be expressed as:

$$\begin{aligned} \left\{ \begin{array}{ll} \max \limits _{\left( \alpha _\mathrm{I }(x), \beta _\mathrm{I }(x)\right) }a_\mathrm{I }- \alpha _\mathrm{I }(x)+(b_\mathrm{I }-\beta _\mathrm{I }(x)) (x+ve_\mathrm{I })-C_\mathrm{I }\\ \text{ subject } \text{ to: }\\ \quad \quad e_\mathrm{I }=\arg \max \limits _{\hat{e}_\mathrm{I }\ge 0} \big (\alpha _\mathrm{I }(x)+\beta _\mathrm{I }(x) (x+v\hat{e}_\mathrm{I })-\frac{1}{2}\hat{e}_\mathrm{I }^{2}\\ \qquad \quad -\frac{1}{2}\rho \sigma ^{2}\beta _\mathrm{I }^{2}(x)\big )\\ \quad \quad \alpha _\mathrm{I }(x)+\beta _\mathrm{I }(x)(x+ve_\mathrm{I }) -\frac{1}{2}e_\mathrm{I }^{2}-\frac{1}{2}\rho \sigma ^{2}\beta _\mathrm{I }^{2}(x)\ge 0. \end{array} \right. \end{aligned}$$
(19)

To solve Model (19), we employ the two-step optimization method, which is described as follows.

Step 1: The project manager will choose effort \(e_\mathrm{I }\) to maximize his certainty equivalent, that is the same as maximizing

$$\begin{aligned} \mathrm MV _\mathrm{I }(x)=\alpha _\mathrm{I }(x) +\beta _\mathrm{I }(x)(x+ve_\mathrm{I }) -\frac{1}{2}e_\mathrm{I }^{2}-\frac{1}{2}\rho \sigma ^{2}\beta _\mathrm{I }^{2}(x) \end{aligned}$$

which is concave in \(e_\mathrm{I }\). The maximum is completely characterized by the first-order condition

$$\begin{aligned} v\beta _\mathrm{I }(x)-e_\mathrm{I }=0, \end{aligned}$$

which implies

$$\begin{aligned} e^{*}_\mathrm{I }=v\beta _\mathrm{I }(x). \end{aligned}$$

Substituting \(e_\mathrm{I }\) into Model (19) yields

$$\begin{aligned} \left\{ \begin{array}{l} \max \limits _{\left( \alpha _\mathrm{I }(x), \beta _\mathrm{I }(x)\right) }a_\mathrm{I } -\alpha _\mathrm{I }(x)+(b_\mathrm{I }- \beta _\mathrm{I }(x))(x+v^{2}\beta _\mathrm{I }(x))-C_{I}\\ \text{ subject } \text{ to: }\\ \quad \quad \alpha _\mathrm{I }(x)+x\beta _\mathrm{I }(x)+ \frac{1}{2}(v^{2}-\rho \sigma ^{2})\beta _\mathrm{I }^{2}(x)\ge 0. \end{array} \right. \end{aligned}$$
(20)

Step 2: At optimality, the IR condition is binding. If it were not, we could replace \(\alpha _\mathrm{I }(x)\) with \(\alpha _\mathrm{I }'(x)<\alpha _\mathrm{I }(x)\). Since the objective function is decreasing in \(\alpha _\mathrm{I }(x)\), \(\alpha _\mathrm{I }'(x)\) improves the objective function. After substituting the fixed payment into the objective function of Model (20), Model (20) reduces to:

$$\begin{aligned} \max \limits _{\beta _\mathrm{I }(x)} \pi _\mathrm{I }=a_\mathrm{I }+b_\mathrm{I }x- \frac{1}{2}(v^{2}+\rho \sigma ^{2})\beta _\mathrm{I }^{2}(x)+ b_\mathrm{I }v^{2}\beta _\mathrm{I }(x)-C_{I} \end{aligned}$$

By the first-order condition, we can obtain

$$\begin{aligned} \beta ^{*}_\mathrm{I }(x)=\frac{b_\mathrm{I }v^{2}}{v^{2}+\rho \sigma ^{2}}. \end{aligned}$$

Following the determinate optimal incentive coefficient \(\beta ^{*}_\mathrm{I }(x)\), the optimal fixed payment \(\alpha ^{*}_\mathrm{I }(x)\) and the optimal effort level \(e^{*}_\mathrm{I }\) for the project manager can be obtained immediately. The proof of the proposition is complete. \(\square \)

Proof of Proposition 2

For the given \((\alpha ^{*}_\mathrm{I },\beta ^{*}_\mathrm{I })\), Model (10) can be rewritten as

$$\begin{aligned} \left\{ \begin{array}{l} \max \limits _{\left( a_\mathrm{I },b_\mathrm{I }\right) } \Pi _\mathrm{I }=-a_\mathrm{I }+(1-b_\mathrm{I }) (E[\theta ]+v^{2}\beta ^{*}_\mathrm{I }(x))\\ \text{ subject } \text{ to: }\\ \quad \quad a_\mathrm{I }-\alpha ^{*}_\mathrm{I }(x)+(b_\mathrm{I } -\beta ^{*}_\mathrm{I }(x))(E[\theta ]+v^{2}\beta ^{*}_\mathrm{I }(x))-C_{I}\ge 0. \end{array} \right. \end{aligned}$$
(21)

At optimality, the IR condition is binding. If it were not, we could replace \(a_\mathrm{I }(x)\) with \(a_\mathrm{I }'(x)<a_\mathrm{I }(x)\). Since the objective function is decreasing in \(a_\mathrm{I }(x)\), \(a_\mathrm{I }'(x)\) improves the objective function. After substituting the fixed payment into the objective function of Model (21), the problem reduces to

$$\begin{aligned} \max _{b_\mathrm{I }}\ \Pi _\mathrm{I }&= E[\theta ] -\frac{1}{2}(v^{2}+\rho \sigma ^{2})\left( \frac{b_\mathrm{I }v^{2}}{v^{2} +\rho \sigma ^{2}}\right) ^{2}\nonumber \\&\quad +\,\frac{b_\mathrm{I }v^{4}}{v^{2}+\rho \sigma ^{2}}-C_{I}. \end{aligned}$$

By the first-order condition, we can obtain

$$\begin{aligned} b^{*}_\mathrm{I }=1. \end{aligned}$$

Following the determinate optimal incentive coefficient \(b^{*}_\mathrm{I }\), the optimal fixed payment \(a^{*}_\mathrm{I }\) can be obtained immediately. The proof of the proposition is complete. \(\square \)

Proof of Lemma 4

By the methods used in the proof of Lemmas 1 and 2, we can rewrite supervisor E’s problem \(P_{E}\) as

$$\begin{aligned} \left\{ \begin{array}{l} \max \limits _{\beta _\mathrm{E }(\cdot )} \Pi _\mathrm{E }=\int _{\underline{\theta }}^{\overline{\theta }} \big (a_\mathrm{E }-\mathrm MV _\mathrm{E }(x)+xb_\mathrm{E } +\frac{1}{2}v^{2}b^{2}_\mathrm{E }\\ \quad -\frac{1}{2}\rho \sigma ^{2}\beta _\mathrm{E }^{2}(x)-C_{E}\big )\phi (x)\text{ d }x\\ \text{ subject } \text{ to: }\\ \quad \quad {\frac{\text{ d }\mathrm{MV}_{\mathrm{E}}(x)}{\text{ d }x}=\beta _{\mathrm{E}}(x)},\ \forall x\in [\underline{\theta },\overline{\theta }]\\ \quad \quad {\frac{\text{ d }\beta _\mathrm{E }(x)}{\text{ d }x}\ge 0}, \ \forall x\in [\underline{\theta },\overline{\theta }]\\ \quad \quad \mathrm{MV}_{\mathrm{E}}(\underline{\theta })=0. \end{array} \right. \end{aligned}$$
(22)

We relax supervisor E’s problem by ignoring the constraint that \(\frac{\text{ d }\beta _\mathrm{E }(x)}{\text{ d }x}\ge 0\). The Hamiltonian of supervisor E’s relaxed optimal control problem is

$$\begin{aligned} H\left( \beta _\mathrm{E },\mathrm MV _\mathrm{E }, \lambda ,x\right)&= \left( a_\mathrm{E }-\mathrm MV _\mathrm{E } +xb_\mathrm{E }+\frac{1}{2}v^{2}b^{2}_\mathrm{E }\right. \\&\quad \left. -\,\frac{1}{2}\rho \sigma ^{2}\beta _\mathrm{E }^{2}-C_{E}\right) \phi (x)+\lambda (x)\beta _\mathrm{E }. \end{aligned}$$

By Pontryagin maximum principle, the necessary conditions are: (i) \(\frac{\partial H}{\partial \beta }=0\), (ii) \(\frac{\partial H}{\partial \mathrm MV _\mathrm{E }}=-\frac{\text{ d }\lambda }{\text{ d }x}\) and \(\lambda (\overline{\theta })=0\), (iii) \(\frac{\partial H}{\partial \lambda }=\frac{\text{ d }\mathrm MV _\mathrm{E }(x)}{\text{ d }x}\) and \(\mathrm MV _\mathrm{E }(\underline{\theta })=0\). Condition (ii) implies \(\frac{\text{ d }\lambda }{\text{ d }x}=\phi (x)\). Integration of this expression gives \(\lambda (x)=\Phi (x)-1\). The optimal \(\beta _\mathrm{E }^{*}(x)\) follows directly from condition (i)

$$\begin{aligned} -\rho \sigma ^{2}\beta _{\mathrm{E}}^{*}(x)\phi (x)+\Phi (x)-1=0. \end{aligned}$$

By simple calculation and the assumption \(\beta _{\mathrm{E}}(x)\ge 0\), we can obtain

$$\begin{aligned} \beta _{\mathrm{E}}^{*}(x)=0. \end{aligned}$$

It is straightforward to verify that \(\frac{\text{ d }\beta _{\mathrm{E}}^{*}(x)}{\text{ d }x}\ge 0\), \(x\in [\underline{\theta },\overline{\theta }]\). Following the determinate optimal incentive coefficient \(\beta _\mathrm{E }(x)\), the optimal fixed payment \(\alpha _\mathrm{E }(x)\) for the project manager can be obtained immediately. The proof of the proposition is complete. \(\square \)

Proof of Proposition  3

For the given \((\alpha ^{*}_\mathrm{E },\beta ^{*}_\mathrm{E })\), Model (11) can be written as

$$\begin{aligned} \left\{ \begin{array}{ll} \max \limits _{\left( a_\mathrm{E },b_\mathrm{E }\right) } \Pi _\mathrm{E }=-a_\mathrm{E }+(1-b_\mathrm{E })(E[\theta ]+v^{2}b_\mathrm{E })\\ \text{ subject } \text{ to: }\\ \quad \quad a_\mathrm{E }+E[\theta ]b_\mathrm{E }+\frac{1}{2}v^{2}b_\mathrm{E }^{2}-C_{E}\ge 0. \end{array} \right. \end{aligned}$$
(23)

At optimality, the IR condition is binding. If it were not, we could replace \(a_\mathrm{E }(x)\) with \(a_\mathrm{E }'(x)<a_\mathrm{E }(x)\). Since the objective function is decreasing in \(a_\mathrm{E }(x)\), \(a_\mathrm{E }'(x)\) improves the objective function. After substituting the fixed payment into the objective function of Model (23), the problem reduces to

$$\begin{aligned} \max _{b_\mathrm{E }}\ \Pi _\mathrm{E }=E[\theta ] +v^{2}b_\mathrm{E }-\frac{1}{2}v^{2}b_\mathrm{E }^{2}-C_{E}, \end{aligned}$$

By the first-order condition, we can obtain

$$\begin{aligned} b^{*}_\mathrm{E }=1. \end{aligned}$$

Following the determinate optimal incentive coefficient \(b^{*}_\mathrm{E }\), the optimal fixed payment \(a^{*}_\mathrm{E }\) can be obtained immediately. The proof of the proposition is complete. \(\square \)

Proof of Proposition  4

The results follow directly from Corollaries 1 and 2. \(\square \)

Proof of Proposition  5

The results follow directly from Corollaries 1 and 3. \(\square \)

Proof of Proposition  6

The results follow directly from Propositions 4 and 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Lan, Y. & Zhao, R. Monitoring mechanisms in new product development with risk-averse project manager. J Intell Manuf 28, 667–681 (2017). https://doi.org/10.1007/s10845-014-0993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-0993-5

Keywords

Navigation