Skip to main content
Log in

Prediction of cutting forces in 3-axes milling of sculptured surfaces directly from CAM tool path

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In the present work a new approach for the modelling of milling is described. The cutting forces are calculated for milling operations directly from the tool path provided by a Computer Assisted Manufacturing program. The main idea consists in using tool position points coming from CAM data in order to calculate the local inclination angle of the generated surface and then the tool engagement in the machined material. A good approximation for global and local cutting forces can be obtained when an analytical model able to predict the cutting forces for 3-axes milling is used. Two approaches are proposed to calculate the local cutting forces to show the versatility of the method. The first method uses a thermomechanical approach using a Johnson & Cook constitutive law while the second is based on classical cutting coefficients. Some results are presented for wavelike form and free form machining tests and are compared with experimental data obtained in roughing and finishing of 42CrMo4 steel. Results are satisfactory and the capability of the method to predict the resultant surface roughness is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(E,x,y,z) :

Tool reference system

(O,X,Y,Z) :

Global reference system

i :

Tool path index point (integer)

j :

Tooth index (integer)

k :

Tool path index (integer)

P :

Current point

(R(z), κ, ψ):

Spherical current point coordinates

ψ j :

Edge location angle

Δψ :

Shift angle

κ :

Inclination angle of vector e r

z :

Height along the rotation axis

R(z):

Local radius of tool envelope

R 0 :

Nominal radius of the cutter

θ :

Rotation angle

Ω:

Spindle frequency

i(z):

Local helix angle

(e r , e κ, e ψ ):

Local cutting edge base vectors

K r , K κ , K ψ :

Cutting force coefficients

λ S :

Local cutting edge inclination angle

γ 0 :

Orthogonal rake angle

γ n :

Normal rake angle

dw :

Local elementary cutting width

δ :

Local inclination angle along the surface

CL(i):

Cutter Location points considered along tool path

f :

Feed per rotation

f t :

Feed per tooth

\({\varphi_{x}, \varphi_{z}}\) :

Local feed angles

Δp :

Path interval

\({\varphi_{\Delta p}}\) :

Transverse inclination angle

z sp :

Height of the previous machined surface

C P , R P :

Parameters of tool envelope on the previous tool path

t 0 :

Undeformed chip thickness

e j :

Eccentricity vector for the considered tooth j

References

  • Altintas Y. (2000) Manufacturing automation, metal cutting mechanics, machine tool vibrations and CNC design. Cambridge University Press,

    Google Scholar 

  • Budak E., Ozlu E. (2008) Development of a thermomechanical cutting process for machining process simulations. CIRP Annals—Manufacturing Technology 57(1): 97–100

    Article  Google Scholar 

  • Chukwujekwu Okafor A., Adetona O. (1995) Predicting quality characteristics of end-milled parts based on multi-sensor integration using neural networks: Individual effects of learning parameters and rules. Journal of Intelligent Manufacturing 6(6): 389–400

    Article  Google Scholar 

  • Dudzinski D., Molinari A. (1997) A modelling of cutting for viscoplastic materials. International Journal of Mechanical Sciences 39(4): 369–389

    Article  Google Scholar 

  • Engin S., Altintas Y. (2001) Mechanics and dynamics of general milling cutters, Part I: helical end mills. International Journal of Machine Tools and Manufacture 41(15): 2195–2212

    Article  Google Scholar 

  • Fontaine M., Devillez A., Moufki A., Dudzinki D. (2006) Predictive force model for ball-end milling and experimental validation with a wavelike form machining test. International Journal of Machine Tools and Manufacture 46(3–4): 367–380

    Article  Google Scholar 

  • Fontaine M., Moufki A., Devillez A., Dudzinki D. (2007a) Modelling of cutting forces in ball-end milling with tool–surface inclination, part I: Predictive force model and experimental validation. Journal of Materials Processing Technology 189(1–3): 73–84

    Article  Google Scholar 

  • Fontaine M., Moufki A., Devillez A., Dudzinki D. (2007b) Modelling of cutting forces in ball-end milling with tool–surface inclination, part II. Influence of cutting conditions, run-out, ploughing and inclination angle. Journal of Materials Processing Technology 189(1–3): 85–96

    Article  Google Scholar 

  • Fontaine M., Devillez A., Dudzinki D. (2007c) Parametric geometry for modelling of milling operations. International Journal of Machining and Machinability of Materials 2(2): 186–205

    Article  Google Scholar 

  • Jrad M., Devillez A., Dudzinski D. (2007) Analytical and finite element approaches for the drilling modelling. 10th Esaform conference on material forming. AIP Conference Proceedings 907: 757–762. doi:10.1063/1.2729604

    Article  Google Scholar 

  • Kim G. M., Cho P. J., Chu C. N. (2000) Cutting force prediction of sculptured surface ball-end milling using Z-map. International Journal of Machine Tools and Manufacture 40(2): 277–291

    Article  Google Scholar 

  • Lamikiz A., Lopez L. N., DeLacalle J. A., Salgado M. A. (2004) Cutting force estimation in sculptured surface milling. International Journal of Machine Tools and Manufacture 44(14): 1511–1526

    Article  Google Scholar 

  • Lazoglu I. (2003) Sculptured surface machining, a generalized model of ball-end milling force system. International Journal of Machine Tools and Manufacture 43(5): 453–462

    Article  Google Scholar 

  • Lee P., Altintas Y. (1996) Prediction of ball-end milling forces from orthogonal cutting data. International Journal of Machine Tools and Manufacture 36(9): 1059–1072

    Article  Google Scholar 

  • Lopez de Lacalle L. N., Lamikiz A., Sanchez J. A., Salgado M. A. (2007) Toolpath selection based on the minimum deflection cutting forces in theprogramming of complex surfaces milling. International Journal of Machine Tools and Manufacture 47(2): 388–400

    Article  Google Scholar 

  • Lu H. S., Chang C. K., Hwang N. C., Chung C. T. (2009) Grey relation alanalysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling. Journal of Materials Processing Technology 209(8): 3808–3817

    Article  Google Scholar 

  • Malekian M., Park S. S., Jun M. B. G. (2009) Modeling of dynamic micro-milling cutting forces. International Journal of Machine Tools and Manufacture 49(7–8): 586–598

    Article  Google Scholar 

  • Markopoulos A. P., Manolakos D. E., Vaxevanidis N. M. (2008) Artificial neural network models for the prediction of surface roughness in electrical discharge machining. Journal of Intelligent Manufacturing 19(3): 283–292

    Article  Google Scholar 

  • Maurel A., Michel G., Thibaud S., Fontaine M., Gelin J. C. (2008) Inverse method for identification of material parameters directly from milling experiments. International Journal of Material Forming 1: 1435–1438

    Article  Google Scholar 

  • Merdol S. D., Altintas Y. (2008) Virtual cutting and optimization of three-axis milling processes. International Journal of Machine Tools and Manufacture 48(10): 1063–1071

    Article  Google Scholar 

  • Molinari A., Moufki A. (2005) A new thermomechanical model of cutting applied to turning operations. Part I. theory. International Journal of Machine Tools and Manufacture 45(2): 166–180

    Article  Google Scholar 

  • Moufki A., Molinari A. (2005) A new thermomechanical model of cutting applied to turning operations. Part II. Parametric study. International Journal of Machine Tools and Manufacture 45(2): 181–193

    Article  Google Scholar 

  • Moufki A., Devillez A., Dudzinski D., Molinari A. (2004) Thermomechanical modelling of oblique cutting and experimental validation. International Journal of Machine Tools and Manufacture 44(9): 971–989

    Article  Google Scholar 

  • Ozturk B., Lazoglu I., Erdim H. (2006) Machining of free-form surfaces. Part II: Calibration and forces. International Journal of Machine Tools and Manufacture 46(7–8): 736–746

    Article  Google Scholar 

  • Salami R., Sadeghi M. H., Motakef B. (2007) Feedrate optimization for 3-axis ball-end milling of sculptured surfaces. International Journal of Machine Tools and Manufacture 47(5): 760–767

    Article  Google Scholar 

  • Sharma V. S., Dhiman S., Sehgal R., Sharma S. K. (2008) Estimation of cutting forces and surface roughness for hard turning using neural networks. Journal of Intelligent Manufacturing 19(4): 473–483

    Article  Google Scholar 

  • Sun S., Brandt M., Dargusch M. S. (2009) Characteristics of cut- ting forces and chip formation in machining of titanium alloys. International Journal of Machine Tools and Manufacture 49(7–8): 561–568

    Article  Google Scholar 

  • Ullah A. M. M. S., Harib K. H. (2005) Manufacturing process performance prediction by integrating crisp and granular information. Journal of Intelligent Manufacturing 16(3): 319–332. doi:10.1007/s10845-005-7026-3

    Article  Google Scholar 

  • Ullah, A. M. M. S., & Harib, K. H. (2009). Simulation of cutting force using nonstationary Gaussian process. Journal of Intelligent Manufacturing, doi:10.1007/s10845-009-0245-2.

    Google Scholar 

  • Wan M., Zhang W.-H. (2009) Systematic study on cutting force modelling methods for peripheral milling. International Journal of Machine Tools and Manufacture 49(5): 424–432

    Article  Google Scholar 

  • Yang M., Park H. (1991) The prediction of cutting force in ball-end milling. International Journal of Machine Tools and Manufacture 31(1): 45–54

    Article  Google Scholar 

  • Zhu R., Kapoor S. G., DeVor R. E. (2001) Mechanistic modeling of the ball-end milling process for multi-axis machining of free-form surfaces. ASME Journal of Manufacturing Science and Engineering 123(3): 369–379

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zeroudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeroudi, N., Fontaine, M. & Necib, K. Prediction of cutting forces in 3-axes milling of sculptured surfaces directly from CAM tool path. J Intell Manuf 23, 1573–1587 (2012). https://doi.org/10.1007/s10845-010-0460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-010-0460-x

Keywords

Navigation