Skip to main content
Log in

A Method for Selecting Optimum Microparameters’ Values in the Numerical Simulation of Rock Cutting

  • Review
  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

A Publisher Correction to this article was published on 18 January 2023

This article has been updated

Abstract

This paper deals with the numerical simulation of rock cutting laboratory tests using the discrete element method. The main objective is to provide a method for calibrating numerical DEM models of rock cutting in a systematic way so that realistic results are yielded. The numerical models are developed with the discrete element code Yade, which models rocks as a collection of bonded spheres. The models are calibrated in a four-step process based on the design of experiments method and optimization. The calibrated models are evaluated both quantitatively and qualitatively against actual laboratory cutting tests, in terms of the ratio of the simulated mean cutting force to the actual one and the cutting force time series, respectively. The fully calibrated models showed that the simulated cutting process matched qualitatively the actual cutting force recordings and underestimated the mean cutting force by approximately 3%. It is concluded that well-calibrated numerical simulations of the rock cutting process can provide not only a better understanding of the process itself but also quantitative data regarding the cutting force and energy requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

Abbreviations

β i :

Coefficients (─)

γ int :

Interaction range coefficient (─)

ν :

Poisson ratio (─)

ρ :

Density (kg/m3)

σ c :

Macroscopic compressive strength (MPa)

σ c t :

Macroscopic strength ratio (─)

BTS :

Brazilian tensile strength (MPa)

φ :

Internal friction angle (degrees)

a :

Distance from the design space to a star point

Actual_MCF_S{1–11} :

Actual mean cutting force cut#{1–11} (kN)

Actual_S{1–11} :

Actual cutting force curve cut#{1–11} (kN)

c :

Interparticle cohesive strength (MPa)

c/t :

Interparticle strength ratio (─)

CCC :

Central composite circumscribed

CCD :

Central composite design method

CCF :

Central composite faced

CCI :

Central composite inscribed

DE :

Discrete element

DEM :

Discrete element method

DOE :

Design of experiment

E :

Macroscopic Young’s modulus (GPa)

E eq :

Interparticle elasticity modulus (GPa)

KNKS :

Stiffness ratio (─)

MCF :

Mean cutting force (kN)

MCF PB :

Mean cutting force from the PB method (kN)

MCF CCD :

Mean cutting force from the CCD method (kN)

MCF lab :

Actual mean cutting force (kN)

MSE :

Mechanical specific energy (kJ/m3)

N :

Coordination number (─)

NIST :

National Institute of Standards and Technology

OFAT :

One-factor-at-a-time

PB :

Plackett–Burman method

phi :

Interparticle friction coefficient (degrees)

RSM :

Response surface methodology

Sim_MCF-S{1–11} :

Simulated mean cutting force Cut#{1–11} (kN)

Sim_S{1–11} :

Simulated cutting force curve Cut#{1–11} (kN)

Sim_S{1–11}_mv :

Simulated cutting force curve moving average Cut#{1–11}

SLSQP :

Sequential least square programming method (─)

t :

Interparticle tensile strength (MPa)

UCS :

Uniaxial compressive strength (MPa)

UCS/UTS :

Macroscopic strength ratio (─)

UTS :

Uniaxial tensile strength (MPa)

X1, X2 :

Main effects of the DOE

X1X2 :

Interaction

x i :

Coded microparameters

Y :

Response

References

  1. Cundall PA, Hart RD (1992) Numerical modelling of discontinua. Eng Comput 9:101–113. https://doi.org/10.1108/eb023851

    Article  Google Scholar 

  2. Smilauer V et al (2015) Yade documentation 2nd ed. Geneva: CERN- Zenodo. 10.5281/zenodo.34073

  3. Kozicki J, Donzé FV (2009) YADE-OPEN DEM: an open-source software using a discrete element method to simulate granular material. Eng Comput 26:786–805. https://doi.org/10.1108/02644400910985170

    Article  MATH  Google Scholar 

  4. Suhr B, Six K (2017) Friction phenomena and their impact on the shear behaviour of granular material. Comp Part Mech 4:23–24. https://doi.org/10.1007/s40571-016-0119-2

    Article  Google Scholar 

  5. Scholtes L, Donze FV, Khanal M (2011) Scale effects on the strength of geomaterials, case study: coal. J Mech Phys Solids 59:1131–1146. https://doi.org/10.1016/j.jmps.2011.01.009

    Article  MATH  Google Scholar 

  6. Wang X, Li J (2014) Simulation of triaxial response of granular materials by modified DEM. Sci China Phys Mech Astron 57:2297–2308. https://doi.org/10.1007/s11433-014-5605-z

    Article  Google Scholar 

  7. Astakhov VP (2012) Design of experiment methods in manufacturing: basics and practical applications. In: Davim JP (ed) Statistical and computational techniques in manufacturing. Springer, Berlin Heidelberg, pp 1–54

    Google Scholar 

  8. Huang H, Detournay E, Bellier B (1999) Discrete element modeling of rock cutting.: In Proceedings of the 37th U.S. Rock Mechanics Symposium. Vail, Colorado

  9. Lei ST, Kaitkay P (2003) Distinct element modeling of rock cutting under hydrostatic pressure. Key Eng Mater 250:110–117. https://doi.org/10.4028/www.scientific.net/kem.250.110

    Article  Google Scholar 

  10. Onate E, Rojek J (2004) Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng 193:3087–3128. https://doi.org/10.1016/j.cma.2003.12.056

    Article  MATH  Google Scholar 

  11. Zhang R, Li J (2006) Simulation on mechanical behavior of cohesive soil by distinct element method. J Terramechanics 43:303–316. https://doi.org/10.1016/j.jterra.2005.05.006

    Article  Google Scholar 

  12. Stavropoulou M (2006) Modelling of small-diameter rotary drilling tests on marbles. Int J Rock Mech Min Sci 43:1034–1051. https://doi.org/10.1016/j.ijrmms.2006.03.008

    Article  Google Scholar 

  13. Labra C, Rojek J, Onate E, Zarate F (2008) Advances in discrete element modelling of underground excavations. Acta Geotech 3:317–322. https://doi.org/10.1007/s11440-008-0071-2

    Article  Google Scholar 

  14. Block G, Howie J (2009) Role of failure mode on rock cutting dynamics Paper presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana. https://doi.org/10.2118/124870-MS

  15. Mendoza JA, Gamwo IK, Zhang W, Lin JS (2010) Discrete element modelling of rock cutting using crushable particles. In: Proceedings of the 44th US Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium. Salt Lake City, Utah

  16. Mendoza JA, Gamwo IK, Zhang W, Lin JS (2011) Considerations for discrete modeling of rock cutting. In: Proceedings of the 45th US Rock Mechanics/Geomechanics Symposium. California

  17. Su O, Akcin NA (2011) Numerical simulation of rock cutting using the discrete element method. Int J Rock Mech Min 48:434–442. https://doi.org/10.1016/j.ijrmms.2010.08.012

    Article  Google Scholar 

  18. Rojek J, Onate E, Labra C, Kargl H (2011) Discrete element simulation of rock cutting. Int J Rock Mech Mini Sci 48:996–1010. https://doi.org/10.1016/j.ijrmms.2011.06.003

    Article  Google Scholar 

  19. Zhao D, Liu JQ, Guo W (2012) The simulation of cutter-rock interaction in PFC. Appl Mech Mater 170–173:3385–3389. https://doi.org/10.4028/www.scientific.net/amm.170-173.3385

    Article  Google Scholar 

  20. Huang H, Lecampion B, Detournay E (2013) Discrete element modeling of tool-rock interaction I: rock cutting. Int J Numer Anal Meth Geomech 37:1913–1929. https://doi.org/10.1002/nag.2113

    Article  Google Scholar 

  21. Martinez IR, Fontoura S, Inoue E, Carrapatoso C, Lourengo A, Curry D (2013) Simulation of single cutter experiments in evaporites through finite element method. Paper presented at the SPE/IADC Drilling Conference, Amsterdam, The Netherlands. https://doi.org/10.2118/163504-MS

  22. van Wyk G, Els DNJ, Akdogan G, Bradshaw SM, Sacks N (2014) Discrete element simulation of tribological interactions in rock cutting. Int J Rock Mech Min Sci 65:8–19. https://doi.org/10.1016/j.ijrmms.2013.10.003

    Article  Google Scholar 

  23. Ji YJ, Xu BX, Sun YJ (2014) Discrete element simulation of coal cutting. Appl Mech Mater 711:48–52. https://doi.org/10.4028/www.scientific.net/amm.711.48

    Article  Google Scholar 

  24. Zhang QQ, Han ZN, Ning SH, Liu QZ, Guo RW (2015) Numerical simulation of rock cutting in different mode using the discrete element method. J GeoEnging 10:35–43. https://doi.org/10.6310/jog.2015.10(2).1

    Article  Google Scholar 

  25. Carrapatoso CM, Lautenschlager CE, Lima Righetto GL, Fontoura SA, Inoue N (2016) Rock cutting analysis employing finite and discrete element methods. J Mech Eng Autom 6:100–108. https://doi.org/10.17265/2159-5275/2016.02.006

    Article  Google Scholar 

  26. Yanxin L, Haibo L, Xiaohua Z, Liping T (2017) Bonded-cluster simulation of rock-cutting using PFC2D. Cluster Comput 20:1289–1301. https://doi.org/10.1007/s10586-017-0808-5

    Article  Google Scholar 

  27. Zhu X, Liu W, Lv Y (2017) The investigation of rock cutting simulation based on discrete element method. Geomech Eng 13:977–995. https://doi.org/10.12989/gae.2017.13.6.977

    Article  Google Scholar 

  28. Xuefeng L, Shibo W, Shirong G, Malekian R, Zhixiong L (2018) Investigation on the influence mechanism of rock brittleness on rock fragmentation and cutting performance by discrete element method. Measurement 113:120–130. https://doi.org/10.1016/j.measurement.2017.07.043

    Article  Google Scholar 

  29. Zhu XH, Luo YX, Wj L (2019) The rock breaking and ROP increase mechanisms for single-tooth torsional impact cutting using DEM. Pet Sci 16:1134–1147. https://doi.org/10.1007/s12182-019-0318-6

    Article  Google Scholar 

  30. Yu B, Zhang K, Niu G (2021) Rock strength determination based on rock drillability index and drilling specific energy: numerical simulation using discrete element method. IEEE Access 9:43923–43937. https://doi.org/10.1109/ACCESS.2021.3061552

    Article  Google Scholar 

  31. Fu Z, Tergeist M, Kueck M, Ostermeyer G (2022) Investigation of the cutting force response to a PDC cutter in rock using the discrete element method. J Pet Sci Eng 213:110330. https://doi.org/10.1016/j.petrol.2022.110330

    Article  Google Scholar 

  32. Zhang H, Ni H, Wang Z, Huang B, Liu S, Xu X, Liu C (2022) Discrete element modeling and simulation study on cutting rock behavior under spring-mass-damper system loading. J Pet Sci Eng 209:109872. https://doi.org/10.1016/j.petrol.2021.109872

    Article  Google Scholar 

  33. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  34. Fakhimi A, Villegas T (2007) Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture. Rock Mech Rock Eng 40:193–211. https://doi.org/10.1007/s00603-006-0095-6

    Article  Google Scholar 

  35. Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44:871–889. https://doi.org/10.1016/j.ijrmms.2007.01.004

    Article  Google Scholar 

  36. Wang H, Xu C, Li T, Liu S, Peng N (2013) The relationships between macro and micro-mechanical parameters for modeling diamond rock cutting using DEM. In: Proceedings of the 3rd International FLAC/DEM Symposium, Zhu, Detournay, Hart & Nelson (eds.):07–06. https://hdl.handle.net/2440/84046. Accessed 20 June 2022

  37. Wang M, Cao P (2017) Calibrating the micromechanical parameters of the PFC2D(3D) models using the improved simulated annealing algorithm. Mat Probl Eng 1:1–11. https://doi.org/10.1155/2017/6401835

    Article  Google Scholar 

  38. Li P, Jiang S, Tang D, Xu B (2017) A PFC3D-based numerical simulation of cutting load for lunar rock simulant and experimental validation. Adv Space Res 59:2583–2599. https://doi.org/10.1016/j.asr.2017.02.032

    Article  Google Scholar 

  39. NIST/SEMATECH e-Handbook of statistical methods. https://www.itl.nist.gov/div898/handbook/. Accessed 10 June 2022

  40. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrica 33:305–325. https://doi.org/10.1093/biomet/33.4.305

    Article  MathSciNet  MATH  Google Scholar 

  41. Fowell RJ (1993) The mechanics of rock cutting. In: Hudson J.A (ed) Excavation, support and monitoring, 1st edn. Pergamon, UK, 155–176

  42. Anagnostou V (2016) Specific energy for cutting sedimentary rocks in laboratory tests. National Technical University of Athens, MSc thesis, Greece (in Greek)

  43. Perras MA, Diederichs MS (2014) A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng 32:525–546. https://doi.org/10.1007/s10706-014-9732-0

    Article  Google Scholar 

  44. Lei S, Kaitkay P, Shen X (2004) Simulation of rock cutting using distinct element method – PFC2D. In: Shimizu Y, Hart RD, Cundall PA (ed) Numerical modeling in micromechanics via particle methods, 1st edn. Taylor Francis Forensic Sci, 63–71

  45. Cho N, Martin CD, Sego DC (2007) A clumped particle model for rock. Int J Rock Mech Min Sci 44:997–1010. https://doi.org/10.1016/j.ijrmms.2007.02.002

    Article  Google Scholar 

  46. Potyondy DO (2012) A flat-jointed bonded-particle material for hard rock. In: Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium. Chicago, Illinois

  47. Scholtès L, Donzé FV (2013) A DEM model for soft and hard rocks: role of grain interlocking on strength. J Mech Phys Solids 61:352–369. https://doi.org/10.1016/j.jmps.2012.10.005

    Article  Google Scholar 

Download references

Funding

The first author was supported for this research through a Doctoral Dissertation Fellowship provided by the Research Committee of the National Technical University of Athens.

Author information

Authors and Affiliations

Authors

Contributions

The first author conducted the research, developed the DEM simulation code, run the simulations, analyzed the results, and drafted the first version of this paper. The second author supervised the research, provided the laboratory test dataset, reviewed the analysis of results, and edited the final version of this paper. Both authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to A. D. Kalogeropoulos.

Ethics declarations

Conflict of Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalogeropoulos, A.D., Michalakopoulos, T.N. A Method for Selecting Optimum Microparameters’ Values in the Numerical Simulation of Rock Cutting. Mining, Metallurgy & Exploration 40, 211–227 (2023). https://doi.org/10.1007/s42461-022-00724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-022-00724-8

Keywords

Navigation