Skip to main content

Advertisement

Log in

Contrasting trends of butterfly species preferring semi-natural grasslands, field margins and forest edges in northern Europe

  • Original Paper
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Indicator classifications help us to focus on the most relevant groups of species in monitoring the effects of land use changes on biodiversity. We studied changes in distribution area of 74 butterfly species preferring one of the three common habitats of boreal agricultural landscapes: semi-natural grasslands (35 species), arable field margins (7) and forest edges (32). Using extensive atlas data from four time periods during the last 50 years in Finland, we quantified trends in the occupancy of the species in 10 km grid squares, and classified them into four classes: declining (23), stable (17), increasing (27) and fluctuating (7) species. Trends among the species favouring three habitats were different: 60% of the species of semi-natural grasslands had declined, whereas 86% of the species typical of open field margins had increased. An increase also predominated in species associated with forest edges. Declining and increasing species differed in three ecological characteristics: increasing species were more mobile, utilized a wider range of habitats and, based on their larval host plants, lived in more eutrophic habitats than declining species. Species overwintering as adults showed more positive trends in occupancy than species overwintering as eggs, larvae or pupae. Observed trends in occupancy are in good agreement with long-term changes in land use and habitat availability in Finland: a long-continued decrease in the area of semi-natural grasslands and an increased amount of open forest edges and clearings due to modern forestry during the past 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anonymous (2005) Finnish Statistical Yearbook of Forestry 2005. The Finnish Forest Research Institute

  • Aro JE (1900). Suomen perhoset. Otava, Helsinki

    Google Scholar 

  • Balmer O, Erhardt A (2000). Consequences of succession on extensively grazed grasslands for central European butterfly communities: Rethinking conservation practices. Conserv Biol 14:746–757

    Article  Google Scholar 

  • Balmford A, Bennun L, ten Brink B, Cooper D, Côté IM, Crane P, Dobson A, Dudley N, Dutton I, Green RE, Gregory R, Harrison J, Kennedy ET, Kremen C, Leader-Williams N, Lovejoy T, Mace G, May R, Mayaux P, Phillips J, Redford K, Ricketts TH, Rodriguez JP, Sanjayan M, Schei P, van Jaarsveld A, Walther BA (2005a). Science and the convention on biological diversity’s 2010 target. Science 307:212–213

    Article  CAS  Google Scholar 

  • Balmford A, Crane P, Dobson AP, Green RE, Mace GM (2005b). The 2010 challenge: data availability, information needs, and extraterrestrial insights. Philos Trans R Soc B 360:221–228

    Article  Google Scholar 

  • Cowley MJR, Thomas CD, Thomas JA, Warren MS (1999) Flight areas of British butterflies: assessing species status and decline. Proc R Soc Lond B 266:1587–1592

    Article  Google Scholar 

  • Cowley MJR, Thomas CD, Roy DB, Wilson RJ, León-Cortés JL, Gutiérrez D, Bulman CR, Quinn RM, Moss D, Gaston KJ (2001) Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. J Anim Ecol 70:410–425

    Article  Google Scholar 

  • Davies ZG, Wilson RJ, Brereton TM, Thomas CD (2005) The re-expansion and improving status of the silver-spotted skipper butterfly (Hesperia comma) in Britain: a metapopulation success story. Biol Conserv 124:189–198

    Article  Google Scholar 

  • Dennis RLH, Thomas CD (2000). Bias in butterfly distribution maps: the influence of hot spots and recorder’s home range. J Insect Conserv 4:73–77

    Article  Google Scholar 

  • Dennis RLH, Sparks TH, Hardy PB (1999). Bias in butterfly distribution maps: the effects of sampling effort. J Insect Conserv 3:33–42

    Article  Google Scholar 

  • Dufréne M, Legendre P (1997). Species assemblages and indicator species: the need for a flexible approach. Ecol Monogr 67:345–266

    Google Scholar 

  • Ellenberg H, Weber HE, Duell R, Wirth V, Werner W (2001) Indicator values of plants in Central Europe. Scr Geobot 18:1–262, 3rd edn

    Google Scholar 

  • Erhardt A, Thomas JA (1991). Lepidoptera as indicators of change in semi-natural grasslands of lowland and upland Europe. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic Press, London, pp 213–236

    Google Scholar 

  • Gregory RD, van Strien AJ, Vorisek P, Gmelig Meyling AW, Noble DG, Foppen RPB, Gibbons DW (2005). Developing indicators for European birds. Philos Trans R. Soc B 360:269–288

    Article  Google Scholar 

  • Heath J, Pollard E, Thomas JA (1984). Atlas of butterflies in Britain and Ireland. Viking, Harmondsworth

    Google Scholar 

  • Hietala-Koivu R (2003) Lost field margins. A study of landscape change in four case areas in Finland between 1954 and 1998. PhD Thesis, University of Turku, Turku, Finland

  • Hill JK, Thomas CD, Huntley B (1999). Climate and habitat availability determine 20th century changes in a butterfly’s range margin. Proc R Soc Lond B 266:1197–1206

    Article  Google Scholar 

  • Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002). Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc Lond B 269:2163–2171

    Article  CAS  Google Scholar 

  • Huldén L (ed), Albrecht A, Itämies J, Malinen P, Wettenhovi J (2000) Atlas of Finnish Macrolepidoptera. Finnish Lepidopterologist Society and Finnish Natural History Museum, Helsinki (In Finnish and Swedish with English summary)

  • Hyönteiskartoitus/Insektkartering 81 (1996) Results of the mapping in 1996 of the distribution of 21 insect species in Finland. Sahlbergia 3:63–75

    Google Scholar 

  • Kaisila J (1962). Immigration und Expansion der Lepidopteren in Finnland in den Jahren 1869–1960. Acta Entomol Fen 18:1–452

    Google Scholar 

  • Kleijn D, Baquero RA, Clough Y, Díaz M, De Esteban J, Fernández F, Gabriel D, Herzog F, Holzschuh A, Jöhl R, Knop E, Kruess A, Marshall EJP, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006). Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–254

    Article  CAS  PubMed  Google Scholar 

  • Komonen A, Grapputo A, Kaitala V, Kotiaho JS, Päivinen J (2004). The role of niche breadth, resource availability and range position on the life history of butterflies. Oikos 105:41–54

    Article  Google Scholar 

  • Kotiaho JS, Kaitala V, Komonen A, Päivinen J (2005). Predicting the risk of extinction from shared ecological characteristics. Proc Natl Acad Sci USA 102: 1963–1967

    Article  CAS  PubMed  Google Scholar 

  • Kullberg J, Albrecht A, Kaila L, Varis V (2002). Checklist of Finnish Lepidoptera—Suomen perhosten luettelo. Sahlbergia 6:45–190

    Google Scholar 

  • Kuussaari M, Pöyry J, Lundsten K-E (2000). Butterfly monitoring in agricultural landscapes: the monitoring method and first year’s results [in Finnish with an English summary]. Baptria 25:44–56

    Google Scholar 

  • León-Cortés JL, Cowley MJR, Thomas CD (1999). Detecting decline in a formerly widespread species: how common is the common blue butterfly Polyommatus icarus? Ecography 22:643–650

    Article  Google Scholar 

  • León-Cortés JL, Cowley MJR, Thomas CD (2000). The distribution and decline of a widespread butterfly Lycaena phlaeas in a pastoral landscape. Ecol Entomol 25:285–294

    Article  Google Scholar 

  • Luoto M, Rekolainen S, Aakkula J, Pykälä J (2003). Loss of plant species richness and habitat connectivity of grasslands associated with agricultural change in Finland. Ambio 32:447–452

    Article  PubMed  Google Scholar 

  • Maes D, van Dyck H (2001). Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biol Conserv 99:236–276

    Article  Google Scholar 

  • Marttila O, Haahtela T, Aarnio H, Ojalainen P (1992). Päiväperhosopas. Kirjayhtymä Oy, Helsinki

    Google Scholar 

  • Marttila O, Saarinen K, Haahtela T, Aarnio H, Ojalainen P (2000). Päiväperhosopas. Suomi ja lähialueet. Tammi, Helsinki

    Google Scholar 

  • McCarthy MA (1998). Identifying declining and threatened species with museum data. Biol Conserv 83:9–17

    Article  Google Scholar 

  • McCune B, Grace JB (2002). Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon

    Google Scholar 

  • Mikkola K (1979). Vanishing and declining species of Finnish Lepidoptera. Notulae Entomol 59:1–9

    Google Scholar 

  • Mikkola K (1997). Population trends of Finnish Lepidoptera during 1961–1996. Entomol Fenn 8: 121–143

    Google Scholar 

  • Öckinger E, Hammarstedt O, Nilsson SG, Smith HG (2006). The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels. Biol Conserv 128:564–573

    Article  Google Scholar 

  • Oostermeijer JGB, van Swaay CAM 1998. The relationship between butterflies and environmental indicator values: a tool for conservation in a changing landscape. Biol Conserv 86:271–280

    Article  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Pitkänen M, Kuussaari M, Pöyry J (2001). Butterflies. In: Pitkänen M, Tiainen J (eds) Biodiversity of agricultural landscapes in Finland. BirdLife Finland Conservation Series No. 3. Yliopistopaino, Helsinki, pp 51–68

    Google Scholar 

  • Pöyry J, Lindgren S, Salminen J, Kuussaari M (2005). Responses of butterfly and moth species to restored cattle grazing in semi-natural grasslands. Biol Conserv 122:465–478

    Article  Google Scholar 

  • Pöyry J, Luoto M, Paukkunen J, Pykälä J, Raatikainen K, Kuussaari M (2006) Different responses of plants and herbivore insects to a gradient of vegetation height: an indicator of the vertebrate grazing intensity and successional age. Oikos 115:401–412

    Article  Google Scholar 

  • Punttila P, Virkkala R, Auvinen A-P, Toivonen H, Kaipiainen H, Söderman G, Mannerkoski I (2005). Metsät [Forests]. In: Hildén M, Auvinen A-P, Primmer E (eds) Suomen biodiversiteettiohjelman arviointi [English summary: Evaluation of the Finnish national action plan for biodiversity]. Suomen ympäristö 770. Suomen ympäristökeskus, Helsinki, pp 37–51

    Google Scholar 

  • Prendergast JR, Eversham BC 1995. Butterfly diversity in southern Britain: hotspot losses since 1930. Biol Conserv 72:109–114

    Article  Google Scholar 

  • R Development Core Team (2004) R. A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. (ISBN 3-900051-00-3, URL http://www.R-project.org.)

  • Saarinen K, Lahti T, Marttila O (2003). Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991–2000. Biodivers Conserv 12:2147–2159

    Article  Google Scholar 

  • Sparks TH, Roy DB, Dennis RLH (2005). The influence on temperature on migration of Lepidoptera into Britain. Glob Change Biol 11:507–514

    Article  Google Scholar 

  • Thomas CD, Abery JCG (1995). Estimating rates of butterfly decline from distribution maps: the effect of scale. Biol Conserv 73:59–65

    Article  Google Scholar 

  • Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001). Ecological and evolutionary processes at expanding range margins. Nature 411:577–581

    Article  CAS  PubMed  Google Scholar 

  • Thomas JA (2005). Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos Trans R Soc B 360:339–357

    Article  CAS  Google Scholar 

  • Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004). Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Nature 303:1879–1881

    CAS  Google Scholar 

  • Tuomenvirta H (2004). Reliable estimation of climatic variations in Finland. Finn Meteorol Inst Contrib 43:1–79

    Google Scholar 

  • UNEP (2006) United Nations Environment Programme. Convention on Biological Diversity. 2010 Biodiversity Target. http://www.biodiv.org/2010-target/default.asp (accessed 17 March 2006)

  • Valle KJ (1935). Suomen eläimet 2. Suurperhoset I. Päiväperhoset. Werner Söderström Oy, Porvoo

    Google Scholar 

  • van Swaay CAM (1990). An assessment of the changes in butterfly abundance in the Netherlands during the 20th century. Biol Conserv 52:287–302

    Article  Google Scholar 

  • van Swaay CAM (1995). Measuring changes in butterfly abundance in the Netherlands. In: Pullin AS (eds) Ecology and conservation of butterflies. Chapman & Hall, London, pp 230–247

    Google Scholar 

  • van Swaay C, van Strien A (2005). Using butterfly monitoring data to develop a European grassland butterfly indicator. In: Kuehn E, Feldmann R, Thomas JA, Settele J (eds) Ecology and conservation of butterflies in Europe, vol 1: general concepts and case studies. Pensoft Publishers, Sofia, pp 106–108

    Google Scholar 

  • van Swaay CAM, Warren MS (1999). Red data book of European butterflies (Rhopalocera). Nature and Environment 99. Council of Europe Publishing, Strasbourg

    Google Scholar 

  • van Swaay C, Warren M, Lois G (2006). Biotope use and trends of European butterflies. J. Insect Conserv 10:189–209

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002). Modern applied statistics with S. Springer-Verlag, Berlin

    Google Scholar 

  • Virkkala R, Luoto M, Rainio K 2004. Effects of landscape composition on farmland and red-listed birds in boreal agriculture-forest mosaics. Ecography 27:273–284

    Article  Google Scholar 

  • Warren MS, Barnett LK, Gibbons DW, Avery MI (1997). Assessing national conservation priorities: an improved Red List of British butterflies. Biol Conserv. 82:317–328

    Article  Google Scholar 

  • Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001). Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

    Article  CAS  PubMed  Google Scholar 

  • Wenzel M, Schmitt T, Weitzel M, Seitz A (2006). The severe decline of butterflies on western German calcareous grasslands during the last 30 years: a conservation problem. Biol Conserv 128: 542–552

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Larry Huldén for allowing us to use the butterfly atlas database of the Finnish Museum of Natural History. Andreas Erhardt, Sonja Kivinen, Miska Luoto and an anonymous referee provided helpful comments on the manuscript, and Michael Bailey improved the language. This study was financed by the Ministry of Agriculture and Forestry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikko Kuussaari.

Appendix

Appendix

Appendix. Summary of the six species traits for the 74 butterfly species of Finnish agricultural landscapes. See Material and methods for explanation of trait classes.

Species

Host specificity

Habitat breadth

Nutrient status

Mobility

Overwintering stage

Host plant growth form

Hesperiidae

Pyrgus malvae

3

2

1

2

Pupa

Herbaceous

Pyrgus alveus

3

2

1

2

Egg

Herbaceous

Carterocephalus palaemon

3

1

2

2

Larva

Grassy

Carterocephalus silvicola

3

1

2

3

Larva

Grassy

Thymelicus lineola

3

3

2

3

Egg

Grassy

Hesperia comma

3

1

1

2

Egg

Grassy

Ochlodes sylvanus

3

3

2

3

Larva

Grassy

Papilionidae

Parnassius apollo

1

1

1

2

Egg

Herbaceous

Parnassius mnemosyne

1

1

2

2

Egg

Herbaceous

Papilio machaon

3

3

2

4

Pupa

Herbaceous

Pieridae

Leptidea sinapis

3

1

2

3

Pupa

Herbaceous

Aporia crataegi

3

1

2

3

Larva

Woody

Pieris brassicae

3

3

3

4

Pupa

Herbaceous

Pieris rapae

3

3

3

4

Pupa

Herbaceous

Pieris napi

3

4

3

4

Pupa

Herbaceous

Anthocharis cardamines

3

3

2

4

Pupa

Herbaceous

Gonepteryx rhamni

2

4

2

4

Adult

Woody

Lycaenidae

Thecla betulae

1

2

2

2

Egg

Woody

Favonius quercus

1

2

2

1

Egg

Woody

Satyrium w-album

1

1

2

1

Egg

Woody

Satyrium pruni

1

2

2

2

Egg

Woody

Callophrys rubi

3

2

1

3

Pupa

Herbaceous

Lycaena phlaeas

2

3

1

3

Larva

Herbaceous

Lycaena helle

1

1

1

2

Pupa

Herbaceous

Lycaena dispar

2

2

2

3

Larva

Herbaceous

Lycaena virgaureae

1

3

2

3

Egg

Herbaceous

Lycaena hippothoe

1

1

2

2

Larva

Herbaceous

Cupido minimus

3

1

1

1

Larva

Herbaceous

Celastrina argiolus

3

2

2

3

Pupa

Woody

Scolitantides orion

1

1

1

1

Pupa

Herbaceous

Glaucopsyche alexis

3

2

2

2

Pupa

Herbaceous

Plebeius argus

3

2

1

3

Egg

Herbaceous

Plebeius idas

3

2

1

3

Egg

Herbaceous

Aricia artaxerxes

2

1

2

2

Larva

Herbaceous

Aricia nicias

1

1

2

2

Larva

Herbaceous

Aricia eumedon

1

2

2

2

Larva

Herbaceous

Polyommatus semiargus

3

2

2

3

Larva

Herbaceous

Polyommatus amandus

3

3

2

3

Larva

Herbaceous

Polyommatus icarus

3

1

2

3

Larva

Herbaceous

Nymphalidae

Apatura iris

2

1

2

3

Larva

Woody

Limenitis populi

2

1

2

4

Larva

Woody

Nymphalis antiopa

3

2

2

4

Adult

Woody

Nymphalis io

1

3

3

4

Adult

Herbaceous

Vanessa atalanta

3

3

3

4

Adult

Herbaceous

Vanessa cardui

3

3

3

4

Adult

Herbaceous

Nymphalis urticae

1

3

3

4

Adult

Herbaceous

Nymphalis c-album

3

3

3

4

Adult

Herb./Woody

Araschnia levana

1

2

3

2

Pupa

Herbaceous

Argynnis paphia

2

2

2

3

Larva

Herbaceous

Argynnis aglaja

2

1

2

4

Larva

Herbaceous

Argynnis niobe

2

1

1

3

Larva

Herbaceous

Argynnis adippe

2

2

2

4

Larva

Herbaceous

Issoria lathonia

2

2

2

3

Larva

Herbaceous

Brenthis ino

3

2

2

3

Larva

Herbaceous

Boloria selene

2

2

2

3

Larva

Herbaceous

Boloria thore

2

1

2

1

Larva

Herbaceous

Boloria titania

2

1

2

1

Larva

Herbaceous

Boloria euphrosyne

3

3

1

4

Larva

Herbaceous

Melitaea cinxia

3

1

1

2

Larva

Herbaceous

Melitaea diamina

1

1

2

1

Larva

Herbaceous

Melitaea athalia

3

1

1

3

Larva

Herbaceous

Euphydryas maturna

3

1

1

3

Larva

Herb./Woody

Euphydryas aurinia

1

1

1

2

Larva

Herbaceous

Satyrinae

Erebia ligea

3

1

2

3

Larva

Grassy

Maniola jurtina

3

1

1

2

Larva

Grassy

Maniola lycaon

3

1

1

2

Larva

Grassy

Aphantopus hyperantus

3

3

2

3

Larva

Grassy

Coenonympha pamphilus

3

3

1

2

Larva

Grassy

Coenonympha glycerion

3

1

2

1

Larva

Grassy

Pararge aegeria

3

1

2

2

Pupa

Grassy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuussaari, M., Heliölä, J., Pöyry, J. et al. Contrasting trends of butterfly species preferring semi-natural grasslands, field margins and forest edges in northern Europe. J Insect Conserv 11, 351–366 (2007). https://doi.org/10.1007/s10841-006-9052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-006-9052-7

Keywords

Navigation