Skip to main content
Log in

The effects of atrial ganglionated plexi stimulation on ventricular electrophysiology in a normal canine heart

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Aims

Atrial ganglionated plexi (GP) have been shown to modulate atrial electrophysiology and play an important role in atrial fibrillation initiation and maintenance. The purpose of this study was to investigate the effects of atrial GP stimulation (GPS) on ventricular refractoriness, restitution properties and electrical alternans.

Methods

In 12 anesthetized dogs, two multiple electrode catheters were sutured at left and right ventricular free walls for recording. Monophasic action potentials were recorded from six epicardial ventricular sites. Ventricular effective refractory period (ERP), action potential duration (APD) restitution properties and APD alternans were measured at baseline and during GPS.

Results

Compared with baseline, GPS significantly prolonged ventricular ERP and APD at all sites and decreased their spatial dispersions (P < 0.05 for all). GPS also significantly flattened ventricular restitution curves and decreased the maximal slope of restitution curves at each site (P < 0.05 for all). APD alternans occurred at shorter pacing cycle length at each site during GPS when compared with baseline (P < 0.05 for all).

Conclusions

GPS prolonged ventricular ERP, decreased the slope of restitution curves and delayed APD alternans, indicating that GPS may exert a protective role for ventricular arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ardell, J. L. (1994). Structure and function of mammalian intrinsic cardiac neurons. In J. A. Armour & J. L. Ardell (Eds.), Neurocardiology (2nd ed., pp. 95–114). New York, NY: Oxford University Press.

    Google Scholar 

  2. Hou, Y., Scherlag, B. J., Lin, J., Zhang, Y., Lu, Z., Truong, K., et al. (2007). Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. Journal of the American College of Cardiology, 50, 61–68.

    Article  PubMed  Google Scholar 

  3. Lu, Z., Scherlag, B. J., Lin, J., Niu, G., Fung, K. M., Zhao, L., et al. (2008). Atrial fibrillation begets atrial fibrillation: autonomic mechanism for atrial electrical remodeling induced by short-term rapid atrial pacing. Circulation Arrhythmia and Electrophysiology, 1, 184–192.

    Article  PubMed  Google Scholar 

  4. Lu, Z., Scherlag, B. J., Lin, J., Niu, G., Ghias, M., Jackman, W. M., et al. (2008). Autonomic mechanism for complex fractionated atrial electrograms: evidence by fast Fourier transform analysis. Journal of Cardiovascular Electrophysiology, 19, 835–842.

    Article  PubMed  Google Scholar 

  5. Lu, Z., Scherlag, B. J., Lin, J., Yu, L., Guo, J. H., Niu, G., et al. (2009). Autonomic mechanism for initiation of rapid firing from atria and pulmonary veins: evidence by ablation of ganglionated plexi. Cardiovascular Research, 84, 245–252.

    Article  PubMed  CAS  Google Scholar 

  6. Cao, J. M., Qu, Z. L., Kim, Y. H., Wu, T. J., Garfinkel, A., Weiss, J. N., et al. (1999). Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: importance of cardiac restitution properties. Circulation Research, 84, 1318–1331.

    Article  PubMed  CAS  Google Scholar 

  7. Banville, I., Chattipakorn, N., & Gray, R. A. (2004). Restitution dynamics during pacing and arrhythmias in isolated pig hearts. Journal of Cardiovascular Electrophysiology, 15, 455–463.

    Article  PubMed  Google Scholar 

  8. Jiang, H., Zhao, D., Cui, B., Lu, Z., Lü, J., Chen, F., et al. (2008). Electrical restitution determined by epicardial contact mapping and surface electrocardiogram: its role in ventricular fibrillation inducibility in swine. Journal of Electrocardiology, 41, 152–159.

    Article  PubMed  Google Scholar 

  9. Koller, M. L., Riccio, M. L., & Gilmour, R. F., Jr. (1998). Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. American Journal of Physiology, 275, H1635–H1642.

    PubMed  CAS  Google Scholar 

  10. Garfinkel, A., Chen, P. S., Walter, D. O., Karagueuzian, H. S., Kogan, B., Evans, S. J., et al. (1997). Quasiperiodicity and chaos in cardiac fibrillation. The Journal of Clinical Investigation, 99, 305–314.

    Article  PubMed  CAS  Google Scholar 

  11. Riccio, M. L., Koller, M. L., & Gilmour, R. F., Jr. (1999). Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circulation Research, 84, 955–963.

    Article  PubMed  CAS  Google Scholar 

  12. Weiss, J. N., Garfinkel, A., Spano, M. L., & Ditto, W. L. (1994). Chaos and chaos control in biology. The Journal of Clinical Investigation, 93, 1355–1360.

    Article  PubMed  CAS  Google Scholar 

  13. Garfinkel, A., Kim, Y. H., Voroshilovsky, O., Qu, Z., Kil, J. R., Lee, M. H., et al. (2000). Preventing ventricular fibrillation by flattening cardiac restitution. Processing National Academy Science USA, 97, 6061–6066.

    Article  CAS  Google Scholar 

  14. Omichi, C., Zhou, S., Lee, M. H., Naik, A., Chang, C. M., Garfinkel, A., et al. (2002). Effects of amiodarone on wave front dynamics during ventricular fibrillation in isolated swine right ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 282, H1063–H1070.

    PubMed  CAS  Google Scholar 

  15. Ng, G. A., Brack, K. E., Patel, V., & Coote, J. H. (2007). Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovascular Research, 73, 750–760.

    Article  PubMed  CAS  Google Scholar 

  16. Brack, K. E., Patel, V. H., Coote, J. H., & Ng, G. A. (2007). Nitric oxide mediates the vagal protective effect on ventricular fibrillation via effects on action potential duration restitution in the rabbit heart. Journal de Physiologie, 583, 695–704.

    Article  CAS  Google Scholar 

  17. Brack, K. E., Patel, V. H., Mantravardi, R., Coote, J. H., & Ng, G. A. (2009). Direct evidence of nitric oxide release from neuronal nitric oxide synthase activation in the left ventricle as a result of cervical vagus nerve stimulation. Journal de Physiologie, 587, 3045–3054.

    Article  CAS  Google Scholar 

  18. Brack, K. E., Coote, J. H., & Ng, G. A. (2011). Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation. Cardiovascular Research, 91, 437–446.

    Article  PubMed  CAS  Google Scholar 

  19. Hoover, D. B., Isaacs, E. R., Jacques, F., Hoard, J. L., Page, P., & Armour, J. A. (2009). Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglion. Neuroscience, 164, 1170–1179.

    Article  PubMed  CAS  Google Scholar 

  20. Han, J., & Moe, G. K. (1964). Nonuniform recovery of excitability in ventricular muscle. Circulation Research, 14, 44–60.

    Article  PubMed  CAS  Google Scholar 

  21. Gough, W. B., Mehra, R., Restivo, M., Zeiler, R. H., & El-Sherif, N. (1985). Reentrant ventricular arrhythmias in the late myocardial infarction period in the dog: 13. Correlation of activation and refractory maps. Circulation Research, 57, 432–442.

    Article  PubMed  CAS  Google Scholar 

  22. Kuo, C. S., Atarashi, H., Reddy, C. P., & Surawicz, B. (1985). Dispersion of ventricular repolarization and arrhythmia: study of two consecutive ventricular premature complexes. Circulation, 72, 370–376.

    Article  PubMed  CAS  Google Scholar 

  23. Rozanski, G. J., Jalife, J., & Moe, G. K. (1984). Determinants of postrepolarization refractoriness in depressed mammalian ventricular muscle. Circulation Research, 55, 486–496.

    Article  PubMed  CAS  Google Scholar 

  24. Ellenbogen, K. A., Smith, M. L., & Eckberg, D. L. (1990). Increased vagal cardiac nerve traffic prolongs ventricular refractoriness in patients undergoing electrophysiology testing. The American Journal of Cardiology, 65, 1345–1350.

    Article  PubMed  CAS  Google Scholar 

  25. Martins, J. B., & Zipes, D. P. (1980). Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the carnne left ventricle. Circulation Research, 46, 100–110.

    Article  PubMed  CAS  Google Scholar 

  26. Pickoff, A. S., & Stolfi, A. (1990). Modulation of electrophysiological properties of neonatal canine heart by tonic parasympathetic stimulation. American Journal of Physiology, 258, H38–H44.

    PubMed  CAS  Google Scholar 

  27. Lopshire, J. C., Zhou, X., Dusa, C., Ueyama, T., Rosenberger, J., Courtney, N., et al. (2009). Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation, 120, 286–294.

    Article  PubMed  Google Scholar 

  28. Odenstedt, J., Linderoth, B., Bergfeldt, L., Ekre, O., Grip, L., Mannheimer, C., et al. (2012). Spinal cord stimulation effects on myocardial ischemia, infarct size, ventricular arrhythmia, and noninvasive electrophysiology in a porcine ischemia–reperfusion model. Heart Rhythm, 8, 892–898.

    Article  Google Scholar 

  29. Koumi, S., Sato, R., Nagasawa, K., & Hayakawa, H. (1997). Activation of inwardly rectifying potassium channels by muscarinic receptor-linked G protein in isolated human ventricular myocytes. Journal of Membrane Biology, 157, 71–81.

    Article  PubMed  CAS  Google Scholar 

  30. Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E. J., & Clapham, D. E. (1987). The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature, 325, 321–326.

    Article  PubMed  CAS  Google Scholar 

  31. Tamargo, J., Caballero, R., Gomez, R., Valenzuela, C., & Delpon, E. (2004). Pharmacology of cardiac potassium channels. Cardiovascular Research, 62, 9–33.

    Article  PubMed  CAS  Google Scholar 

  32. Wickman, K., & Clapham, D. E. (1995). Ion channel regulation by G proteins. Physiological Reviews, 75, 865–885.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 81270250 (ZL), 81270339 (HJ, LY), 81100128 (BC) and 81070143 (ZL, HJ) from National Natural Science Foundation of China, grant 4101024 from the Fundamental Research Funds for the Central Universities (ZL) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20100141120072, ZL) and Wuhan Planning Project of Science and Technology (No. 201271031429, ZL).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Jiang.

Additional information

Bo He and Zhibing Lu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, B., Lu, Z., He, W. et al. The effects of atrial ganglionated plexi stimulation on ventricular electrophysiology in a normal canine heart. J Interv Card Electrophysiol 37, 1–8 (2013). https://doi.org/10.1007/s10840-012-9774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-012-9774-2

Keywords

Navigation