Skip to main content
Log in

CARTO-guided vs. NavX-guided pulmonary vein antrum isolation and pulmonary vein antrum isolation performed without 3-D mapping: effect of the 3-D mapping system on procedure duration and fluoroscopy time

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Pulmonary vein antrum isolation (PVAI) guided by intracardiac echocardiography and a roaming circular mapping catheter is an effective treatment modality for atrial fibrillation. Unfortunately, the complexity of this technique leads to long procedure times and high fluoroscopy exposure. This study examined the effect of two different mapping systems on the procedural characteristics and clinical outcomes of PVAI for atrial fibrillation.

Methods

Referred patients underwent PVAI using a magnetic-based 3-dimensional (3-D) mapping (CARTO® System; group 1), a current-based system (EnSite NavX™; group 2), or fluoroscopy without 3-D mapping (group 3) between February 2004 and November 2009.

Results

Data were analyzed from 71 patients in group 1, 165 patients in group 2, and 197 patients in group 3. Baseline characteristics and measured long-term outcomes did not differ between the groups. Although patients in group 1 were more likely to undergo a concurrent flutter ablation (P = 0.01), they had significantly shorter procedure time, fluoroscopy time, and radiofrequency energy delivery time compared with group 2 and 3 patients. No difference was detected among the groups with respect to recurrence, mean time to recurrence, or number of PVAI procedures.

Conclusions

Use of a magnetic-based 3-D mapping system, which allows precise spatial localization of the ablation catheter, was associated with significantly lower procedure time, fluoroscopy duration, and radiofrequency energy delivery time during catheter ablation for atrial fibrillation compared with a current-based system and ablation performed without 3-D mapping, although measured short- and long-term clinical outcomes were similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Camm, A. J., & Obel, O. A. (1996). Epidemiology and mechanism of atrial fibrillation and atrial flutter. The American Journal of Cardiology, 78(8A), 3–11.

    Article  PubMed  CAS  Google Scholar 

  2. Benjamin, E. J., Wolf, P. A., D’Agostino, R. B., Silbershatz, H., Kannel, W. B., & Levy, D. (1998). Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation, 98(10), 946–952.

    PubMed  CAS  Google Scholar 

  3. Wolf, P. A., Mitchell, J. B., Baker, C. S., Kannel, W. B., & D’Agostino, R. B. (1998). Impact of atrial fibrillation on mortality, stroke, and medical costs. Archives of Internal Medicine, 158(3), 229–234.

    Article  PubMed  CAS  Google Scholar 

  4. Connolly, S. J. (1999). Preventing stroke in atrial fibrillation: why are so many eligible patients not receiving anticoagulant therapy? CMAJ: Canadian Medical Association Journal, 161(5), 533–534.

    PubMed  CAS  Google Scholar 

  5. Crandall, M. A., Bradley, D. J., Packer, D. L., & Asirvatham, S. J. (2009). Contemporary management of atrial fibrillation: update on anticoagulation and invasive management strategies. Mayo Clinic Proceedings, 84(7), 643–662.

    Article  PubMed  Google Scholar 

  6. Chung, M. K., Shemanski, L., Sherman, D. G., Greene, H. L., Hogan, D. B., Kellen, J. C., et al. (2005). Functional status in rate- versus rhythm-control strategies for atrial fibrillation: results of the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) Functional Status Substudy. Journal of the American College of Cardiology, 46(10), 1891–1899.

    Article  PubMed  Google Scholar 

  7. Corley, S. D., Epstein, A. E., DiMarco, J. P., Domanski, M. J., Geller, N., Greene, H. L., et al. (2004). Relationships between sinus rhythm, treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) Study. Circulation, 109(12), 1509–1513.

    Article  PubMed  Google Scholar 

  8. Guglin, M., Chen, R., & Curtis, A. B. (2010). Sinus rhythm is associated with fewer heart failure symptoms: insights from the AFFIRM trial. Heart Rhythm, 7(5), 596–601.

    Article  PubMed  Google Scholar 

  9. Chen, S. A., Hsieh, M. H., Tai, C. T., Tsai, C. F., Prakash, V. S., Yu, W. C., et al. (1999). Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation, 100(18), 1879–1886.

    PubMed  CAS  Google Scholar 

  10. Haissaguerre, M., Jais, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., et al. (1998). Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. The New England Journal of Medicine, 339(10), 659–666.

    Article  PubMed  CAS  Google Scholar 

  11. Haissaguerre, M., Shah, D. C., Jais, P., Hocini, M., Yamane, T., Deisenhofer, I., et al. (2000). Electrophysiological breakthroughs from the left atrium to the pulmonary veins. Circulation, 102(20), 2463–2465.

    PubMed  CAS  Google Scholar 

  12. Natale, A., Pisano, E., Shewchik, J., Bash, D., Fanelli, R., Potenza, D., et al. (2000). First human experience with pulmonary vein isolation using a through-the-balloon circumferential ultrasound ablation system for recurrent atrial fibrillation. Circulation, 102(16), 1879–1882.

    PubMed  CAS  Google Scholar 

  13. Pappone, C., Oreto, G., Lamberti, F., Vicedomini, G., Loricchio, M. L., Shpun, S., et al. (1999). Catheter ablation of paroxysmal atrial fibrillation using a 3D mapping system. Circulation, 100(11), 1203–1208.

    PubMed  CAS  Google Scholar 

  14. Pappone, C., Oreto, G., Rosanio, S., Vicedomini, G., Tocchi, M., Gugliotta, F., et al. (2001). Atrial electroanatomic remodeling after circumferential radiofrequency pulmonary vein ablation: efficacy of an anatomic approach in a large cohort of patients with atrial fibrillation. Circulation, 104(21), 2539–2544.

    Article  PubMed  CAS  Google Scholar 

  15. Pappone, C., Rosanio, S., Oreto, G., Tocchi, M., Gugliotta, F., Vicedomini, G., et al. (2000). Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation, 102(21), 2619–2628.

    PubMed  CAS  Google Scholar 

  16. Marrouche, N. F., Dresing, T., Cole, C., Bash, D., Saad, E., Balaban, K., et al. (2002). Circular mapping and ablation of the pulmonary vein for treatment of atrial fibrillation: impact of different catheter technologies. Journal of the American College of Cardiology, 40(3), 464–474.

    Article  PubMed  Google Scholar 

  17. Estner, H. L., Deisenhofer, I., Luik, A., Ndrepepa, G., von Bary, C., Zrenner, B., et al. (2006). Electrical isolation of pulmonary veins in patients with atrial fibrillation: reduction of fluoroscopy exposure and procedure duration by the use of a non-fluoroscopic navigation system (NavX). Europace, 8(8), 583–587.

    Article  PubMed  Google Scholar 

  18. Lakkireddy, D., Nadzam, G., Verma, A., Prasad, S., Ryschon, K., Di Biase, L., et al. (2009). Impact of a comprehensive safety program on radiation exposure during catheter ablation of atrial fibrillation: a prospective study. Journal of Interventional Cardiac Electrophysiology, 24(2), 105–112.

    Article  PubMed  Google Scholar 

  19. Rotter, M., Takahashi, Y., Sanders, P., Haissaguerre, M., Jais, P., Hsu, L. F., et al. (2005). Reduction of fluoroscopy exposure and procedure duration during ablation of atrial fibrillation using a novel anatomical navigation system. European Heart Journal, 26(14), 1415–1421.

    Article  PubMed  Google Scholar 

  20. Wagner, L. K., Eifel, P. J., & Geise, R. A. (1994). Potential biological effects following high X-ray dose interventional procedures. Journal of Vascular and Interventional Radiology, 5(1), 71–84.

    Article  PubMed  CAS  Google Scholar 

  21. Lo, L. W., & Chen, S. A. (2009). Developments and recent advances in catheter ablation of paroxysmal atrial fibrillation. Future Cardiology, 5(6), 557–565.

    Article  PubMed  Google Scholar 

  22. Knackstedt, C., Schauerte, P., & Kirchhof, P. (2008). Electro-anatomic mapping systems in arrhythmias. Europace, 10(Suppl 3), iii28–34.

    Article  PubMed  Google Scholar 

  23. Piorkowski, C., Hindricks, G., Schreiber, D., Tanner, H., Weise, W., Koch, A., et al. (2006). Electroanatomic reconstruction of the left atrium, pulmonary veins, and esophagus compared with the “true anatomy” on multislice computed tomography in patients undergoing catheter ablation of atrial fibrillation. Heart Rhythm, 3(3), 317–327.

    Article  PubMed  Google Scholar 

  24. Shpun, S., Gepstein, L., Hayam, G., & Ben-Haim, S. A. (1997). Guidance of radiofrequency endocardial ablation with real-time three-dimensional magnetic navigation system. Circulation, 96(6), 2016–2021.

    PubMed  CAS  Google Scholar 

  25. Juneja, R. (2009). Radiofrequency ablation for cardiac tachyarrhythmia: principles and utility of 3D ampping systems. Current Science, 97(3), 416–424.

    Google Scholar 

  26. Packer, D. L. (2005). Three-dimensional mapping in interventional electrophysiology: techniques and technology. Journal of Cardiovascular Electrophysiology, 16(10), 1110–1116.

    Article  PubMed  Google Scholar 

  27. Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., et al. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044–2053.

    Article  PubMed  Google Scholar 

  28. Khaykin, Y., Skanes, A., Champagne, J., Themistoclakis, S., Gula, L., Rossillo, A., et al. (2009). A randomized controlled trial of the efficacy and safety of electroanatomic circumferential pulmonary vein ablation supplemented by ablation of complex fractionated atrial electrograms versus potential-guided pulmonary vein antrum isolation guided by intracardiac ultrasound. Circulation: Arrhythmia and Electrophysiology, 2(5), 481–487.

    Article  Google Scholar 

  29. Faulkner, K., & Werduch, A. (2008). An estimate of the collective dose to the European population from cardiac X-ray procedures. The British Journal of Radiology, 81(972), 955–962.

    Article  PubMed  CAS  Google Scholar 

  30. Georges, J. L., Livarek, B., Gibault-Genty, G., Aziza, J. P., Hautecoeur, J. L., Soleille, H., et al. (2009). Reduction of radiation delivered to patients undergoing invasive coronary procedures. Effect of a programme for dose reduction based on radiation-protection training. Archives of Cardiovascular Disease, 102(12), 821–827.

    Article  Google Scholar 

  31. Steven, D., Servatius, H., Rostock, T., Hoffmann, B., Drewitz, I., Mullerleile, K., et al. (2010). Reduced fluoroscopy during atrial fibrillation ablation: benefits of robotic guided navigation. Journal of Cardiovascular Electrophysiology, 21(1), 6–12.

    Article  PubMed  Google Scholar 

  32. Khaykin, Y., Mendez, C., Whaley, B., Giewercer, D., Cashabeck, D., Monaghan, J., et al. Fluoroscopy time alone is insufficient to estimate deleivered radiation dose during ablation procedures. Presented at: Heart Rhythm Society’s 31st Annual Scientific Sessions. May 12–15, 2010. Denver, Colorado. Abstract PO1-35.

  33. Ferguson, J. D., Helms, A., Mangrum, J. M., Mahapatra, S., Mason, P., Bilchick, K., et al. (2009). Catheter ablation of atrial fibrillation without fluoroscopy using intracardiac echocardiography and electroanatomic mapping. Circulation: Arrhythmia and Electrophysiology, 2(6), 611–619.

    Article  Google Scholar 

  34. Verma, A., Mantovan, R., Macle, L., De Martino, G., Chen, J., Morillo, C. A., et al. (2010). Substrate and Trigger Ablation for Reduction of Atrial Fibrillation (STAR AF): a randomized, multicentre, international trial. European Heart Journal, 31(11), 1344–1356.

    Article  PubMed  Google Scholar 

  35. Di Biase, L., Wang, Y., Horton, R., Gallinghouse, G. J., Mohanty, P., Sanchez, J., et al. (2009). Ablation of atrial fibrillation utilizing robotic catheter navigation in comparison to manual navigation and ablation: single-center experience. Journal of Cardiovascular Electrophysiology, 20(12), 1328–1335.

    Article  PubMed  Google Scholar 

  36. Elayi, C. S., Di Biase, L., Barrett, C., Ching, C. K., al Aly, M., Lucciola, M., et al. (2010). Atrial fibrillation termination as a procedural endpoint during ablation in long-standing persistent atrial fibrillation. Heart Rhythm, 7(9), 1216–1223.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for medical editorial assistance was provided by Biosense Webster, Inc. We thank Tamalette Loh, PhD, ProEd Communications, Inc., for her medical editorial assistance with this manuscript.

Disclosures

Drs. Khaykin and Verma have received speaker’s honoraria from Biosense Webster, St. Jude Medical; and Medtronic. Biosense Webster, Inc. provided support for medical editorial assistance for preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaariv Khaykin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaykin, Y., Oosthuizen, R., Zarnett, L. et al. CARTO-guided vs. NavX-guided pulmonary vein antrum isolation and pulmonary vein antrum isolation performed without 3-D mapping: effect of the 3-D mapping system on procedure duration and fluoroscopy time. J Interv Card Electrophysiol 30, 233–240 (2011). https://doi.org/10.1007/s10840-010-9538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-010-9538-9

Keywords

Navigation