Skip to main content

Advertisement

Log in

Electroless nano zinc oxide–activate carbon composite supercapacitor electrode

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

An electroless deposition process was used to synthesize the nanostructured zinc oxide (ZnO)–activated carbon (AC) as supercapacitor. The composite oxide was studied by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD). The electrochemical performance of the nanocomposite was analyzed through cyclic voltammetry (CV) and AC impedance spectroscopy (EIS) in 0.1 M Na2SO4 as electrolyte. A specific capacitance 187 F g−1 at a scan rate of 5 mV s−1 was obtained using cyclic voltammetry (CV) and a nearly rectangular shaped CV curve was observed for the composite oxide. The supercapacitor was quite stable during charge–discharge cycling and exhibited constant capacitance during the long-term cycling. It also yielded a specific capacitance 171 F g−1 at 5 mA cm−2 with a high energy density of 21.9 Wh kg−1 and 4.2 kW kg−1 of power density. Due to unique structure of prepared ZnO–AC nanocomposite, it is a promising candidate for supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors. J. Power Sources 195, 7880–7903 (2010)

    Article  Google Scholar 

  2. A. M. Abioye, F. N. Ani, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renew. Sust. Energ. Rev. 52, 1282–1293 (2015)

    Article  Google Scholar 

  3. S. Faraji, F. N. Ani, Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors - A review. J. Power Sources 263, 338–360 (2014)

    Article  Google Scholar 

  4. S. Faraji, F. N. Ani, The development supercapacitor from activated carbon by electroless plating - A review. Renew. Sust. Energ. Rev. 42, 823–834 (2015)

    Article  Google Scholar 

  5. M. Ramani, B. S. Haran, R. E. White, B. N. Popov, L. Arsov, Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide. J. Power Sources 93, 209–214 (2001)

    Article  Google Scholar 

  6. M. Ramani, B. S. Haran, R. E. White, B. N. Popov, Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors. J. Electrochem. Soc. 148, A374–AA80 (2001)

    Article  Google Scholar 

  7. C.-Z. Yuan, B. Gao, X.-G. Zhang, Electrochemical capacitance of NiO/Ru0.35 V0.65O2 asymmetric electrochemical capacitor. J. Power Sources 173, 606–612 (2007)

    Article  Google Scholar 

  8. C. Yuan, X. Zhang, Q. Wu, B. Gao, Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte. Solid State Ionics 177, 1237–1242 (2006)

    Article  Google Scholar 

  9. Y. G-h, J. Z-h, A. Aramata, Y.-z. Gao, Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide. Carbon 43, 2913–2917 (2005)

    Article  Google Scholar 

  10. J. Gomez, E. E. Kalu, High-performance binder-free Co-Mn composite oxide supercapacitor electrode. J. Power Sources 230, 218–224 (2013)

    Article  Google Scholar 

  11. A. Yuan, X. Wang, Y. Wang, J. Hu, Comparison of nano-MnO2 derived from different manganese sources and influence of active material weight ratio on performance of nano-MnO2/activated carbon supercapacitor. Energy Convers. Manag. 51, 2588–2594 (2010)

    Article  Google Scholar 

  12. S. Kunze, D. Schlettwein, Electrochemical and electroless deposition of porous zinc oxide on aluminium. Electrochim. Acta 128, 360–367 (2014)

    Article  Google Scholar 

  13. S. Eisermann, A. Kronenberger, M. Dietrich, S. Petznick, A. Laufer, A. Polity, et al., Hydrogen and nitrogen incorporation in ZnO thin films grown by radio-frequency (RF) sputtering. Thin Solid Films 518, 1099–1102 (2009)

    Article  Google Scholar 

  14. J. Katayama, M. Izaki, Observation of photocurrent generation in electrodeposited zinc oxide layers. J. Appl. Electrochem. 30, 855–858 (2000)

    Article  Google Scholar 

  15. M. Selvakumar, D. Krishna Bhat, A. Manish Aggarwal, S. Prahladh Iyer, G. Sravani, Nano ZnO-Activated carbon composite electrodes for supercapacitors. Phys. B Condens. Matter 405, 2286–2289 (2010)

    Article  Google Scholar 

  16. M. Jayalakshmi, M. Palaniappa, K. Balasubramanian, Single step solution combustion synthesis of ZnO/carbon composite and its electrochemical characterization for supercapacitor application. Int. J. Electrochem. Sci. 3, 96–103 (2008)

    Google Scholar 

  17. I. Y. Y. Bu, R. Huang, One-pot synthesis of ZnO/reduced graphene oxide nanocomposite for supercapacitor applications. Mater. Sci. Semicond. Process. 31, 131–138 (2015)

    Article  Google Scholar 

  18. L. Fang, B. Zhang, W. Li, J. Zhang, K. Huang, Q. Zhang, Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors. Electrochim. Acta 148, 164–169 (2014)

    Article  Google Scholar 

  19. X. Li, Z. Wang, Y. Qiu, Q. Pan, P. Hu, 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. J. Alloys Compd. 620, 31–37 (2015)

    Article  Google Scholar 

  20. R. S. Ray, B. Sarma, M. Misra, Random shaped ZnO supported on a porous substrate as supercapacitor. Mater. Lett. 155, 102–105 (2015)

    Article  Google Scholar 

  21. K. Pandiselvi, S. Thambidurai, Chitosan-ZnO/polyaniline ternary nanocomposite for high-performance supercapacitor. Ionics 20, 551–561 (2015)

    Article  Google Scholar 

  22. Ü. Alver, A. Tanrıverdi, Ö. Akgül, Hydrothermal preparation of ZnO electrodes synthesized from different precursors for electrochemical supercapacitors. Synth. Met. 211, 30–34 (2016)

    Article  Google Scholar 

  23. D. Kalpana, K. S. Omkumar, S. S. Kumar, N. G. Renganathan, A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochim. Acta 52, 1309–1315 (2006)

    Article  Google Scholar 

  24. Z. Li, Z. Zhou, G. Yun, K. Shi, X. Lv, B. Yang, High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites. Nanoscale Res. Lett. 8, 473–482 (2013)

    Article  Google Scholar 

  25. Z. Zhang, L. Ren, W. Han, L. Meng, X. Wei, X. Qi, et al., One-pot electrodeposition synthesis of ZnO/graphene composite and its use as binder-free electrode for supercapacitor. Ceram. Int. 41, 4374–4380 (2015)

    Article  Google Scholar 

  26. T. Lu, L. Pan, H. Li, G. Zhu, T. Lv, X. Liu, et al., Microwave-assisted synthesis of graphene-ZnO nanocomposite for electrochemical supercapacitors. J. Alloys Compd. 509, 5488–5492 (2011)

    Article  Google Scholar 

  27. C. H. Kim, B.-H. Kim, Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes. J. Power Sources 274, 512–520 (2015)

    Article  Google Scholar 

  28. A. Ahmadi Ashtiani, S. Faraji, S. Amjad Iranagh, A. H. Faraji, The study of electroless Ni-P alloys with different complexing agents on Ck45 steel substrate. J. Arab. Chem. 2013; doi:10.1016/j.arabjc.2013.05.015

  29. S. Faraji, A. Rahim, N. Mohamed, C. Sipaut, Effect of SiC on the corrosion resistance of electroless Cu–P–SiC composite coating. J. Coat. Technol. Res. 9, 115–124 (2012)

    Article  Google Scholar 

  30. S. Faraji, A. H. Faraji, S. R. Noori, An investigation on electroless Cu-P composite coatings with micro and nano-SiC particles. Mater. Des. 54, 570–575 (2014)

    Article  Google Scholar 

  31. S. Faraji, A. Abdul Rahim, N. Mohamed, C. S. Sipaut, A study of electroless copper-phosphorus coatings with the addition of silicon Carbide (SiC) and graphite (Cg) particles. Surf. Coat. Technol. 206, 1259–1268 (2011)

    Article  Google Scholar 

  32. S. Faraji, A. H. Faraji, S. R. Noori, F. N. Ani, Investigation on electroless Cu–P–micro/nanoSiC composite coatings. Surf. Eng. 31, 179–188 (2015)

    Article  Google Scholar 

  33. S. Faraji, A. Rahim, N. Mohamed, C. Sipaut, Electroless copper-phosphorus coatings with the addition of silicon Carbide (SiC) particles. Int. J. Miner. Metall. Mater. 18, 615–622 (2011)

    Article  Google Scholar 

  34. S. Faraji, A. A. Rahim, N. Mohamed, C. S. Sipaut, B. Raja, The influence of SiC particles on the corrosion resistance of electroless, Cu-P composite coating in 1 M HCl. Mater. Chem. Phys. 129, 1063–1070 (2011)

    Article  Google Scholar 

  35. S. Faraji, A. A. Rahim, N. Mohamed, C. S. Sipaut, B. Raja, Corrosion resistance of electroless Cu-P and Cu-P-SiC composite coatings in 3.5 % NaCl. J. Arab. Chem. 6, 379–388 (2013)

    Article  Google Scholar 

  36. T. Shinagawa, S. Otomo, K. J-i, M. Izaki, Electroless deposition of transparent conducting and <0 0 0 1>−oriented ZnO films from aqueous solutions. Electrochim. Acta 53, 1170–1174 (2007)

    Article  Google Scholar 

  37. V. D. Mote, J. S. Dargad, B. N. Dole, Effect of Mn doping concentration on structural, Morphological And Optical studies of ZnO Nano-particles. Nanosci. Nanoeng. 1, 116–122 (2013)

    Google Scholar 

  38. Y. Wang, Z. Q. Shi, Y. Huang, Y. F. Ma, C. Y. Wang, M. M. Chen, et al., Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009)

    Article  Google Scholar 

  39. Y. Haldorai, W. Voit, J.-J. Shim, Nano ZnO@reduced graphene oxide composite for high performance supercapacitor: green synthesis in supercritical fluid. Electrochim. Acta 120, 65–72 (2014)

    Article  Google Scholar 

  40. M. Selvakumar, D. K. Bhat, Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor. Appl. Surf. Sci. 263, 236–241 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Universiti Teknologi Malaysia (UTM), Research Management Centre (RMC), Ministry of Higher Education (MOHE) Grant No 4F135 and Post-Doctoral Program for financial support given to Dr. Soheila Faraji.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Faraji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraji, S., Ani, F.N. Electroless nano zinc oxide–activate carbon composite supercapacitor electrode. J Electroceram 36, 122–128 (2016). https://doi.org/10.1007/s10832-016-0017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0017-2

Keywords

Navigation