Skip to main content
Log in

Effects of different morphologies of ZnO films on hydrogen sensing properties

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

This paper describes the characteristics of chemiresistor hydrogen (H2) sensors with different ZnO film structures in which ZnO dense films, nanoparticles (NPs), and nanorods (NRs) were prepared by RF magnetron sputtering, the sol–gel method, and the hydrothermal method, respectively. These were decorated with a Pt NP catalyst to investigate the performance of devices comprised of these structures. The effects of the ZnO morphology and operating temperature on the gas sensing behavior of the sensor are reported in detail. The various ZnO film morphologies, which contributed significantly to differences between sensors, play a very important role in enhancement of the supported Pt catalyst area and initial oxygen absorption on the ZnO surface. ZnO dense films prepared by sputtering showed the fastest response with a 13.5 % resistance variation at 1,000 ppm H2 because gas adsorption occurred only on the film surface. The sensor with ZnO NRs showed a slower response, but the highest change in resistance of 65.5 % occurred at 1,000 ppm H2 at room temperature. H2 sensing performance of the chemiresistor sensors was improved due to the Pt catalyst, which was more efficient in dissociating H2 gas molecules even at low temperature. The best chemiresistor sensor was fabricated using ZnO NRs and had a response time of approximately 10 s, a 27 s recovery time, and an 81.5 % change in resistance at 200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Hubert, L. Boon-Brett, G. Black, U. Banach, Sensors Actuators B 157, 329 (2011)

    Article  Google Scholar 

  2. K.S. Kim, G.S. Chung, Sensors Actuators B 157, 482 (2011)

    Article  Google Scholar 

  3. M. Shafiei, J. Yu, R. Arsat, K. Kalantar-zadeh, E. Comini, M. Ferroni, G. Sberveglieri, W. Wlodarski, Sensors Actuators B 146, 507 (2010)

    Article  Google Scholar 

  4. K. Tsukada, T. Kiwa, T. Yamaguchi, S. Migitaka, Y. Goto, K. Yokosawa, Sensors Actuators B 114, 158 (2006)

    Article  Google Scholar 

  5. M. Yang, Y. Sun, D. Zhang, D. Jiang, Sensors Actuators B 143, 750 (2010)

    Article  Google Scholar 

  6. Y.S. Huang, Y.Y. Chen, T.T. Wu, Nanotechnology 21, 095503 (2010)

    Article  Google Scholar 

  7. S. Srivastava, S.S. Sharma, S. Agrawal, S. Kumar, M. Singh, Y.K. Vijay, Synth. Met. 160, 529 (2010)

    Article  Google Scholar 

  8. S. Virji, R.B. Kaner, B.H. Weiller, J. Phys. Chem. B 110, 22266 (2006)

    Article  Google Scholar 

  9. S. Shukla, P. Zhang, H.J. Cho, S. Seal, L. Ludwig, Sensors Actuators B 120, 573 (2007)

    Article  Google Scholar 

  10. L.C. Tien, P.W. Sadik, D.P. Norton, L.F. Voss, S.J. Pearton, H.T. Wang, B.S. Kang, F. Ren, J. Jun, J. Lin, Appl. Phys. Lett. 87, 222106 (2005)

    Article  Google Scholar 

  11. J. Eriksson, V. Khranovskyy, F. Soderlind, P.O. Kall, R. Yakimova, A.L. Spetz, Sensors Actuators B 137, 94 (2009)

    Article  Google Scholar 

  12. S. Ozturk, N. Kilinc, N. Tasaltin, Z.Z. Ozturk, Thin Solid Films 520, 932 (2011)

    Article  Google Scholar 

  13. R.C. Pawar, J.S. Shaikh, S.S. Suryavanshi, P.S. Patil, Curr. Appl. Phys. 12, 778 (2012)

    Article  Google Scholar 

  14. R.C. Pawar, J.-W. Lee, V.B. Patil, C.S. Lee, Sensors Actuators B 187, 323 (2013)

    Article  Google Scholar 

  15. A. Katoch, G.-J. Sun, S.-W. Choi, J.-H. Byun, S.S. Kim, Sensors Actuators B 185, 411 (2013)

    Article  Google Scholar 

  16. G.S. Chung, J.M. Jeong, Microelectron. Eng. 87, 2348 (2010)

    Article  Google Scholar 

  17. H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik, D.P. Norton, S.J. Pearton, J. Lin, Appl. Phys. A 81, 1117 (2005)

    Article  Google Scholar 

  18. M. Myers, J. Cooper, B. Pejcic, M. Baker, B. Raguse, L. Wieczorek, Sensors Actuators B 155, 154 (2011)

    Article  Google Scholar 

  19. D.T. Phan, G.S. Chung, Appl. Surf. Sci. 257, 8696 (2011)

    Article  Google Scholar 

  20. D.T. Phan, G.S. Chung, Appl. Surf. Sci. 257, 3285 (2011)

    Article  Google Scholar 

  21. J. Qiu, X. Li, W. He, S.-J. Park, H.-K. Kim, Y.-H. Hwang, J.-H. Lee, Y.-D. Kim, Nanotechnology 20, 155603 (2009)

    Article  Google Scholar 

  22. N. Han, P. Hu, A. Zuo, D. Zhang, Y. Tian, Y. Chen, Sensors Actuators B 145(114), 114–119 (2010)

    Article  Google Scholar 

  23. C.S. Rout, A.R. Raju, A. Govindaraj, C.N.R. Rao, Solid State Commun. 138, 136 (2006)

    Article  Google Scholar 

  24. A.Z. Sadek, W. Wlodarski, Y.X. Li, W. Yu, X. Li, X. Yu, K. Kalantar-zadeh, Thin Solid Films 515, 8705 (2007)

    Article  Google Scholar 

  25. I.-S. Hwang, E.-B. Lee, S.-J. Kim, J.-K. Choi, J.-H. Cha, H.-J. Lee, B.-K. Ju, J.-H. Lee, Sensors Actuators B 154, 295–2011 (2011)

    Article  Google Scholar 

  26. N. Han, X. Wu, L. Chai, H. Liu, Y. Chen, Sensors Actuators B 150, 230 (2010)

    Article  Google Scholar 

  27. D. Monzon-Hernandez, D. Luna-Moreno, D.M. Escobar, J. Villatoro, Sensors Actuators B 151, 219 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

“This work was supported by 2014 Research Funds of Hyundai Heavy Industries for University of Ulsan.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwiy-Sang Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan, DT., Chung, GS. Effects of different morphologies of ZnO films on hydrogen sensing properties. J Electroceram 32, 353–360 (2014). https://doi.org/10.1007/s10832-014-9911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9911-7

Keywords

Navigation