Skip to main content
Log in

Diffuse phase transition behavior of dysprosium doped barium titanate ceramic

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The effect of dysprosium (Dy) doping on the structural and dielectric properties of barium titanate (BaTiO3) ceramic has been studied. Dysprosium-doped barium titanate (BT) with general formula Ba1-xDy2x/3TiO3 (x = 0.0–0.1) is prepared through solid state reaction route. The XRD pattern reports the single phase tetragonal structure up to x = 0.025 with space group of P4mm and a secondary phase is observed for higher concentration of Dy. The Raman study of Ba1-xDy2x/3TiO3 (x = 0.00, 0.01, 0.025) also reveals that the ceramic is showing tetragonal symmetry and with an increase in Dy doping the tetragonal phase is moving toward more symmetric phase i.e. cubic pm3m. The surface morphology of the sintered pellets shows a compact and homogeneous grain distribution with a decrease in grain size as the Dy content increases. The temperature and frequency dependency dielectric study of the ceramic compositions (x = 0.00, 0.01, 0.025) are studied to show the effect of Dy ion on the A site of BaTiO3 perovskite ceramic. The dielectric constant decreases with increase in Dy content. The dielectric diffusivity increases with increase in doping concentration. The P-E hysteresis loop confirms the ferroelectric behavior of the sample with decrease in remanent polarization and increase in coercive field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Ravez, A. Simon, J. Solid State Chem. 162, 260 (2001)

    Article  CAS  Google Scholar 

  2. T. Takennaka, H. Nagata, Y. Hirume, V. Yoshii, K. Matumono, J. Electroceram. 19, 259 (2007)

    Article  Google Scholar 

  3. S. Anwar, P.R. Sagdeo, N.P. Lalla, J. Phys: Cond. Mat. 16, 8445 (2006)

    Google Scholar 

  4. V. Vinothini, P. Singh, M. Balasubramanian, Ceram. Int. 32, 99 (2006)

    Article  CAS  Google Scholar 

  5. R.N. Viswanath, S. Ramasamy, Nanostruct. Mater. 8, 155 (1997)

    Article  CAS  Google Scholar 

  6. Z. He, J. Ma, Y. Qu, C. Wang, Mater. Sci. Eng. B: Adv. 164, 116 (2009)

    Article  CAS  Google Scholar 

  7. K. Kirstein, K. Reichmann, W. Preis, S. Mitsche, J. Eur. Ceram. Soc. 31, 2339 (2011)

    Article  CAS  Google Scholar 

  8. Y. Chen, J.R.G. Evans, S. Yang, J. Am. Ceram. Soc. 94, 3748 (2011)

    Article  CAS  Google Scholar 

  9. S. Anwar, P.R. Sagdeo, N.P. Lalla, Mat. Res. Bull. 43, 1761 (2008)

    Article  CAS  Google Scholar 

  10. Y. Tsur, A. Hitomi, I. Scrymgeour, C. Randall, Jpn. J. Appl. Phys. 40, 255 (2001)

    Article  CAS  Google Scholar 

  11. Y. Nakana, A. Sato, A. Hitomi, T. Nomura, Ceram. Trans. 32, 119 (1993)

    Google Scholar 

  12. HX. Liu, T. Shrout, C. Randall, In: Proceedings of the 8th US-Japan Semin. Dielectric and Piezoelectric Ceramics, Plymouth, (MA, 1997), p. 44

  13. C.H. Kim, K.J. Park, Y.J. Yoon, M.H. Hong, J.O. Hong, K.H. Hur, J. Eur. Ceram. Soc. 28, 1213 (2008)

    Article  CAS  Google Scholar 

  14. H. Saito, H. Chazono, H. Kishi, N. Yamaoka, Jpn. J. Appl. Phys. 30, 2307 (2001)

    Article  Google Scholar 

  15. H. Miao, M. Dong, G. Tan, Y. Pu, J Electroceram. 16, 297 (2006)

    Article  CAS  Google Scholar 

  16. H. Beltran, E. Cordoncillo, P. Escribano, J. Am. Ceram. Soc. 87, 2132 (2004)

    Article  CAS  Google Scholar 

  17. W.H. Lee, W.A. Groen, H. Schreinemacher, D. Hennings, J. Electroceram. 5, 31 (2000)

    Article  CAS  Google Scholar 

  18. F.D. Morrison, D.C. Sinclair, W. A R, J. Electroceram. 6, 219 (2001)

    Article  CAS  Google Scholar 

  19. S.M. Park, Y. Ho Han, J. Korean Phys. Soc. 5(7), 458 (2010)

    Google Scholar 

  20. K.J. Park, C.H. Kim, Y.J. Yoon, S.M. Song, Y.T. Kim, K.H. Hur, J. Eur. Ceram. Soc. 29, 1735 (2009)

    Article  CAS  Google Scholar 

  21. D. Makovec, Z. Samardzijia, M. Drofenik, J. Am. Ceram. Soc. 87, 1324 (2004)

    Article  CAS  Google Scholar 

  22. A. Dixit, S.B. Majumder, P.S. Dobal, R.S. Katiyar, A.S. Bhalla, Thin Solid Films 227, 284 (2004)

    Article  Google Scholar 

  23. A. Scalabrin, A.S. Chaves, D.S. Shim, S.P.S. Porto, Phys. Status Solidi B 79, 731 (1977)

    Article  CAS  Google Scholar 

  24. G. Busca, V. Buscaglia, M. Leoni, P. Nanni, Chem. Mater. 6, 955 (1994)

    Article  CAS  Google Scholar 

  25. S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, J. Am. Ceram. Soc. 73, 3122 (1990)

    Article  CAS  Google Scholar 

  26. X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Solid State Comm. 131, 163–168 (2004)

    Article  CAS  Google Scholar 

  27. S. Lin, T. Lü, C. Jin, X. Wang, Phys. Rev. B 74, 134115 (2006)

    Article  Google Scholar 

  28. B.E. Vugmeister, M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990)

    Article  CAS  Google Scholar 

  29. M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, M. Hanuskova, J. Eur. Ceram. Soc. 20, 1997 (2000)

    Article  CAS  Google Scholar 

  30. K. Watanabe, H. Ohsato, H. Kishi, Y. Okino, N. Kohzu, Y. Iguchi, T. Okuda, Solid State Ion 108, 129 (1998)

    Article  CAS  Google Scholar 

  31. K. Uchino, S. Nomura, Integr. Ferroelectr. 44, 55 (1982)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Anwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badapanda, T., Senthil, V., Panigrahi, S. et al. Diffuse phase transition behavior of dysprosium doped barium titanate ceramic. J Electroceram 31, 55–60 (2013). https://doi.org/10.1007/s10832-013-9808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9808-x

Keywords

Navigation