Skip to main content
Log in

Effects of co-doped CaO/MnO on the piezoelectric/dielectric properties and phase transition of lead-Free (Bi0.5Na0.5)0.94Ba0.06TiO3 piezoelectric ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The piezoelectric properties of (1−x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics were reported and their piezoelectric properties reach extreme values near the MPB (about x = 0.06). The X-ray analysis of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics for all compositions exhibited a pure perovskite structure without any secondary phase. Within a certain ratio of contents, the co-doped ceramics enhanced piezoelectric coefficient (d 33 ), lowered the dielectric loss, and increased the sintered density. The temperature dependence of relative dielectric permittivity (K 33 T) reveals that the solid solutions experience two phase transitions, ferroelectric to anti-ferroelectric and anti-ferroelectric to relaxor ferroelectric, which can be proven by P-E hysteresis loops at different temperatures. In addition, the specimen containing 0.04/0.01 wt.% CaO/MnO showed that the coercive field E c was a minimum value of 26.7 kV/cm, while the remnant polarization P r was a maximum value of 38.7 μC/cm2, corresponding to the enhancement of piezoelectric constant d33 of 179 pC/N, electromechanical coupling factor k p of 37.3%, and relative dielectric permittivity K 33 T of 1137. (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics co-doped with CaO/MnO were considered to be a new and promising candidate for lead-free piezoelectric ceramics owing to their excellent piezoelectric/dielectric properties, which are superior to an un-doped BNBT system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Long, H. Chen, Z. Meng, Mater. Sci. Eng. 99, 445 (2003) doi:10.1016/S0921-5107(02)00455-5

    Article  Google Scholar 

  2. G.-M. Lee, Agency for Technology and Standards, Industry and Energy of the Korean Government, Seminar on EU product-related regulations, pp. 6. (2004)

  3. H. Nagata, T. Takenaka, J. Eur. Ceram. Soc. 21, 1299 (2001) doi:10.1016/S0955-2219(01)00005-X

    Article  CAS  Google Scholar 

  4. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys.-Solid State (Engl. Trans.) 2, 2651 (1961)

    Google Scholar 

  5. K. Sakata, Y. Masuda, Ferroelectrics 7, 347 (1974) doi:10.1080/00150197408238042

    Article  CAS  Google Scholar 

  6. T. Takenaka, K. Sakata, K. Toda, Ferroelectrics 106, 375 (1990)

    CAS  Google Scholar 

  7. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991) doi:10.1143/JJAP.30.2236

    Article  CAS  ADS  Google Scholar 

  8. H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 36(Part I), 6055 (1997) doi:10.1143/JJAP.36.6055

    Article  CAS  ADS  Google Scholar 

  9. H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 37, 5311 (1998) doi:10.1143/JJAP.37.5311

    Article  CAS  ADS  Google Scholar 

  10. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38, 5564–5567 (1999) doi:10.1143/JJAP.38.5564

    Article  CAS  ADS  Google Scholar 

  11. H. Nakata, N. Koizumi, T. Takenaka, Key Eng. Mater. 169–170, 37–40 (1999)

    Article  Google Scholar 

  12. T. Wada, K. Toyoike, Y. Imanaka, Y. Matsuo, Jpn. J. Appl. Phys. 40, 5703 (2001) doi:10.1143/JJAP.40.5703

    Article  CAS  ADS  Google Scholar 

  13. Y.M. Li, W. Chen, Q. Xu, J. Zhou, H.J. Sun, M.S. Liao, J. Electroceram. 14, 53 (2005) doi:10.1007/s10832-005-6584-2

    Article  CAS  Google Scholar 

  14. R. Zuo, C. Ye, X. Fang, J. Li, J. Eur. Ceram. Soc. 28, 871 (2008) doi:10.1016/j.jeurceramsoc.2007.08.011

    Article  CAS  Google Scholar 

  15. B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, J. Eur. Ceram. Soc. 22, 2115 (2002) doi:10.1016/S0955-2219(02)00027-4

    Article  CAS  Google Scholar 

  16. Y.G. Wu, H.L. Zhang, Y. Zhang, J.Y. Ma, D.H. Xie, J. Mater. Sci. 38, 987 (2003) doi:10.1023/A:1022333427521

    Article  CAS  Google Scholar 

  17. H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenana, Jpn. J. Appl. Phys. 42, 7401 (2003) doi:10.1143/JJAP.42.7401

    Article  CAS  ADS  Google Scholar 

  18. L. Wu, D.Q. Xiao, D.M. Lin, J.G. Zhu, P. Yu, Jpn. J. Appl. Phys. 44, 8515 (2005) doi:10.1143/JJAP.44.8515

    Article  CAS  ADS  Google Scholar 

  19. A. Herabut, A. Safari, J. Am. Ceram. Soc. 80, 2954 (1997) doi:10.1111/j.1151-2916.1997.tb03219.x

    Article  CAS  Google Scholar 

  20. H.D. Li, C. Feng, P.H. Xiang, Jpn. J. Appl. Phys. 42, 7387 (2003) doi:10.1143/JJAP.42.7387

    Article  CAS  ADS  Google Scholar 

  21. H.D. Li, C.D. Feng, W.L. Yao, Mater. Lett. 58, 1194 (2004) doi:10.1016/j.matlet.2003.08.034

    Article  CAS  Google Scholar 

  22. X. Zhou, H.S. Gu, Y. Wang, W.Y. Li, T.S. Zhou, Mater. Lett. 59, 1649 (2005) doi:10.1016/j.matlet.2005.01.034

    Article  CAS  Google Scholar 

  23. IRE Standards on Piezoelectric Crystals, Measurements of Piezo. Ceram., proc. IRE 49, 1161 (1961)

  24. R.D. Shannon, Acta Crystallogr. A32, 751 (1976)

    CAS  ADS  Google Scholar 

  25. S.E. Park, S.J. Chung, J. Am. Ceram. Soc. 79, 1290 (1996) doi:10.1111/j.1151-2916.1996.tb08586.x

    Article  CAS  Google Scholar 

  26. B. Jaffe, Piezoelectric ceramics (Academic, New York, 1971), pp. 148–160

    Google Scholar 

  27. S. Säid, J.P. Mercurio, J. Eur. Ceram. Soc. 21, 1333 (2001) doi:10.1016/S0955-2219(01)00012-7

    Article  Google Scholar 

  28. J.R. Gomah-Pettry, S. Säid, P. Marchet, J.P. Mercurio, J. Eur. Ceram. Soc. 24, 1165 (2004) doi:10.1016/S0955-2219(03)00473-4

    Article  CAS  Google Scholar 

  29. M.S. Yoon, H.M. Jang, J. Appl. Phys. 77(8), 3991 (1995) doi:10.1063/1.359510

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Program for the Training of Graduate Students in Regional Strategic Industries and Regional Innovation Center (RIC) Program which was conducted by the Ministry of Commerce, Industry and Energy of the Korean Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-Soon Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, MS., Lee, YG. & Ur, SC. Effects of co-doped CaO/MnO on the piezoelectric/dielectric properties and phase transition of lead-Free (Bi0.5Na0.5)0.94Ba0.06TiO3 piezoelectric ceramics. J Electroceram 23, 564 (2009). https://doi.org/10.1007/s10832-008-9548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10832-008-9548-5

Keywords

Navigation