Skip to main content
Log in

On the ionic conductivity of strongly acceptor doped, fluorite-type oxygen ion conductors

  • 2. Energy: Fuel cells, batteries etc.
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

We present an analytical model for the ionic conductivity of a strongly acceptor doped, fluorite-type oxygen ion conductor, (A1 − x B B x B )O2 − x B/2, i.e. a concentrated solution of AO2 and B2O3, which can be applied, e.g., to yttria doped zirconia (YSZ). The model considers nearest neighbor interactions between oxygen vacancies and dopant cations, which may be negligible, attractive or repulsive. The vacancies are distributed to the tetrahedra formed by the cations using quasi-chemical reactions for the exchange between the different sites. The resulting vacancy distribution is used in a simplified model for the oxygen ion conductivity which considers jump rates between different oxygen sites that depend on their local neighborhood and the nature of the cation-cation edge which has to be crossed during a jump between edge-sharing tetrahedra. Among the various possibilities, only attractive dopant-vacancy interaction together with reduced jump rates through A-B and B-B edges (compared to A-A edges) can explain satisfactorily the experimental findings, i.e. the maximum of the conductivity at dopant fractions x B ≈ 0.15, the slight decrease of the activation energy with increasing temperature and the increase of activation energy with dopant fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hammou and J. Guindet, in The CRC Handbook of Solid State Electrochemistry, edited by P.J. Gellings and H.J.M. Bouwmeester (CRC Press, Boca Raton, 1996), p. 407.

    Google Scholar 

  2. S.P.S. Badwal, Solid State Ionics, 52, 23 (1992).

    Article  CAS  Google Scholar 

  3. P.S. Manning, J.D. Sirman, R.A. De Souza, and J.A. Kilner, Solid State Ionics, 100, 107 (1997).

    Article  Google Scholar 

  4. D.W. Stickler and W.G. Carlson, J. Am. Ceram. Soc., 47, 122 (1964).

    Article  Google Scholar 

  5. H. Inaba and H. Takawa, Solid State Ionics, 83, 1 (1996).

    Article  CAS  Google Scholar 

  6. H. Schmalzried, Z. Phys. Chem. NF, 105, 47 (1977).

    CAS  Google Scholar 

  7. M.S. Khan, M.S. Islam, and D.R. Bates, J. Mater. Chem., 8, 2229 (1998).

    Article  Google Scholar 

  8. M.O. Zacate, L. Minervini, D.J. Bradfield, R.W. Grimes, and K.E. Sickafus, Solid State Ionics, 128, 243 (2000).

    Article  CAS  Google Scholar 

  9. F. Shimojo, T. Okabe, F. Tachibana, M. Kobayashi, and H. Okazaki, J. Phys. Soc. Japan, 61, 2842 (1992).

    Google Scholar 

  10. F. Shimojo and H. Okazaki, J. Phys. Soc. Japan, 61, 4106 (1992).

    Article  CAS  Google Scholar 

  11. M. Meyer and N. Nicoloso, Ber. Bunsenges. Phys. Chem., 101, 1393 (1997).

    CAS  Google Scholar 

  12. A.D. Murray, G.E. Murch, and C.R.A. Catlow, Solid State Ionics, 19, 196 (1986).

    Article  Google Scholar 

  13. R. Krishnamurthy, Y.-G. Yoon, D.J. Srolovitz, and R. Carr, J. Am. Cer. Soc., 87, 1821 (2004).

    Article  CAS  Google Scholar 

  14. S.P.S. Badwal, F.T. Ciacchi, S. Rajendran, and J. Drennan, Solid State Ionics, 109, 167 (1998).

    Article  CAS  Google Scholar 

  15. R.E.W. Casselton, Phys. Status Solidi A, 2, 571 (1970).

    Article  CAS  Google Scholar 

  16. M. Martin, Z. Phys. Chem., 219, 105 (2005).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, M. On the ionic conductivity of strongly acceptor doped, fluorite-type oxygen ion conductors. J Electroceram 17, 765–773 (2006). https://doi.org/10.1007/s10832-006-6007-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-6007-z

Keywords

Navigation