Skip to main content
Log in

Non-weak inhibition and phase resetting at negative values of phase in cells with fast-slow dynamics at hyperpolarized potentials

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Phase response is a powerful concept in the analysis of both weakly and non-weakly perturbed oscillators such as regularly spiking neurons, and is applicable if the oscillator returns to its limit cycle trajectory between successive perturbations. When the latter condition is violated, a formal application of the phase return map may yield phase values outside of its definition domain; in particular, strong synaptic inhibition may result in negative values of phase. The effect of a second perturbation arriving close to the first one is undetermined in this case. However, here we show that for a Morris–Lecar model of a spiking cell with strong time scale separation, extending the phase response function definition domain to an additional negative value branch allows to retain the accuracy of the phase response approach in the face of such strong inhibitory coupling. We use the resulting extended phase response function to accurately describe the response of a Morris–Lecar oscillator to consecutive non-weak synaptic inputs. This method is particularly useful when analyzing the dynamics of three or more non-weakly coupled cells, whereby more than one synaptic perturbation arrives per oscillation cycle into each cell. The method of perturbation prediction based on the negative-phase extension of the phase response function may be applicable to other excitable cell models characterized by slow voltage dynamics at hyperpolarized potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achuthan, S., & Canavier, C. C. (2009). Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. Journal of Neuroscience, 29, 5218–5233.

    Article  PubMed  CAS  Google Scholar 

  • Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization of strongly coupled excitatory neurons: Relating network behavior to biophysics. Journal of Computational Neuroscience, 15, 71–90.

    Article  PubMed  Google Scholar 

  • Bressloff, P. C., & Coombes, S. (2000). Dynamics of strongly-coupled spiking neurons. Neural Computation, 12, 91–129.

    Article  PubMed  CAS  Google Scholar 

  • Canavier, C. C., Butera, R. J., Dror, R. O., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1997). Phase response characteristics of model neurons determine which patterns are expressed in a ring circuit model of gait generation. Biological Cybernetics, 77, 367–380.

    Article  PubMed  CAS  Google Scholar 

  • Canavier, C. C., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1999). Control of multistability in ring circuits of oscillators. Biological Cybernetics, 80, 87–102.

    Article  PubMed  CAS  Google Scholar 

  • Canavier, C. C., Kazanci, F. G., & Prinz, A. A. (2009). Phase resetting curves allow for simple and accurate prediction of robust N.:1 phase locking for strongly coupled neural oscillators. Biophysical Journal, 97, 59–73.

    Article  PubMed  CAS  Google Scholar 

  • Canavier, C. C., & Achuthan, S. (2010). Pulse-coupled oscillators and the phase resetting curve. Mathematical Biosciences, 226, 77–96.

    Article  PubMed  Google Scholar 

  • Dror, R. O., Canavier, C. C., Butera, R. J., Clark, J. W., & Byrne, J. H. (1999). A mathematical critereon based on the phase response curves for stability in a ring of coupled oscillators. Biological Cybernetics, 80, 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G. B. (1996). Type I. membranes, phase resetting curves, and synchrony. Neural Computation, 8, 979–1001.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G. B., & Kopell, N. (1984). Frequency plateaus in a chain of weakly coupled oscillators. SIAM Journal on Mathematical Analysis, 15, 215–237.

    Article  Google Scholar 

  • Ermentrout, G. B., & Kopell, N. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM Journal on Mathematical Analysis, 46, 233–253.

    Article  Google Scholar 

  • Ermentrout, G. B., & Kopell, N. (1990). Oscillator death in systems of coupled neural oscillators. SIAM Journal on Mathematical Analysis, 50, 125–146.

    Article  Google Scholar 

  • Ermentrout, G. B., & Kopell, N. (1991). Multiple pulse interactions and averaging in systems of coupled neural oscillators. Journal of Mathematical Biology, 29, 195–217.

    Article  Google Scholar 

  • Golubitsky, M., Josic, K., & Shea-Brown, E. (2006). Winding numbers and average frequencies in phase oscillator networks. Journal of Nonlinear Science, 16, 201–231.

    Article  Google Scholar 

  • Guckenheimer, J. (1975). Isochrons and Phaseless Sets. Journal of Mathematical Biology, 1, 259–273.

    Article  Google Scholar 

  • Gutkin, B. S., Ermentrout, G. B., & Reyes, A. D. (2005). Phase-response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94, 1623–1635.

    Article  PubMed  Google Scholar 

  • Hansel, D., & Mato, G. (2003). Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. Neural Computation, 15, 1–56.

    Article  PubMed  CAS  Google Scholar 

  • Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7, 307–337.

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich, E. M. (2006). Dynamics systems in neuroscience: The geometry of excitability and bursting (Chapter 10). Synchronization. Cambridge: MIT.

    Google Scholar 

  • Izhikevich, E. M., & Kuramoto, Y. (2006). Weakly coupled oscillators (Vol. 5, p. 448). Elsevier: Encyclopedia of Mathematical Physics.

  • Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.

    Google Scholar 

  • Latham, P. E., Richmond, B. J., Nelson, P. G., & Nirenberg, S. (2000). Intrinsic dynamics in neuronal networks. I. theory. Journal of Neurophysiology, 83, 808–827.

    PubMed  CAS  Google Scholar 

  • Maran, S. K., & Canavier, C. C. (2008). Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved. Journal of Computational Neuroscience, 24, 37–55.

    Article  PubMed  Google Scholar 

  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.

    Article  PubMed  CAS  Google Scholar 

  • Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., et al. (2005). Synchronization in hybrid neuronal networks of the Hippocampal formation. Journal of Neurophysiology, 93, 1197–1208.

    Article  PubMed  Google Scholar 

  • Oh, M., & Matveev, V. (2009). Loss of phase-locking in non-weakly coupled inhibitory networks of type-I. model neurons. Journal of Computational Neuroscience, 26(2), 303–320.

    Article  PubMed  Google Scholar 

  • Oprisan, S. A., & Canavier, C. C. (2001). Stability analysis of rings of pulse-coupled oscillators: The effect of phase resetting in the second cycle after the pulse is important at synchrony and for long pulses. Journal of Differential Equations and Dynamical Systems, 9, 243–258.

    Google Scholar 

  • Oprisan, S. A., Prinz, A. A., & Canavier, C. C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophysical Journal, 87, 2283–2298.

    Article  PubMed  CAS  Google Scholar 

  • Pfeuty, B., Mato, G., Golomb, D., & Hansel, D. (2003). Electrical synapses and synchrony: The role of intrinsic currents. Journal of Neuroscience, 23, 6280–6294.

    PubMed  CAS  Google Scholar 

  • Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.). Methods in neuronal modeling: From ions to networks (2nd ed.). Cambridge: MIT.

    Google Scholar 

  • van Vreeswijk, C., Abbott, L. F., & Ermentrout, B. (1994). When inhibition not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1, 313–321.

    Article  PubMed  Google Scholar 

  • Winfree, A. T. (1974). Patterns of phase compromise in biological cycles. Journal of Mathematical Biology, 1, 73–95.

    Article  Google Scholar 

  • Winfree, A. T. (2001). The geometry of biological time (2nd edn). New York: Springer.

    Google Scholar 

  • Wang, X. J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16, 6402–6413.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported in part by the National Science Foundation grant DMS-0817703 (V.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Matveev.

Additional information

Action Editor: J. Rinzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, M., Matveev, V. Non-weak inhibition and phase resetting at negative values of phase in cells with fast-slow dynamics at hyperpolarized potentials. J Comput Neurosci 31, 31–42 (2011). https://doi.org/10.1007/s10827-010-0292-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0292-x

Keywords

Navigation