Skip to main content
Log in

Patterns of phase compromise in biological cycles

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

It often happens that scalar-valued observables of biological interest are points not on the real line, but on the circle… for example phases of periodic events, and colors. Sometimes one such quantity depends upon two others in a symmetric way, for example, in determining a compromise phase after slime mold plasmodia are fused at different phases of the cell cycle, or in determining the color of a mixture of two colors. In such cases the experimental result cannot depend on the two inputs in an unreservedly continuous way: there must be a point of ambiguity or discontinuity. Experiments involving the cell cycle and glycolysis are examined, in which the discontinuity appears to take two different forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschoff, J.: Phasing of diurnal rhythms as a function of season and latitude (in German). Oecologia3, 125–165 (1969).

    Article  Google Scholar 

  2. Beck, S. D.: Insect Photoperiodism. New York: Academic Press 1968.

    Google Scholar 

  3. Braemer, W.: A critical review of the sun-azimuth hypothesis. Cold Spring Harbor Symposia on Quantitative Biology25, 413–427 (1960).

    Google Scholar 

  4. Brinkmann, K.: Temperatureinflüsse auf die Circadiane Rhythmik vonEuglena gracilis bei Mixotrophie und Auxotrophie. Planta70, 344–389 (1966).

    Article  Google Scholar 

  5. Brinkmann, K.: Der Einfluß von Populationseffekten auf die Circadiane Rhythmik vonEuglena gracilis. Biologische Rhythmen10, 1380–1400 (1967).

    Google Scholar 

  6. Cohen, M. H.: Models for the control of development. Symposia of the society of experimental biology,25: Control mechanism of growth and differentiation, p. 445-476. Cambridge: 1971.

  7. Danilevsky, A. S., Goryshin, N. I., Tyschenko, V. P.: Biological rhythms in Arthropods. Ann. Rev. Entomol.51, 201–244 (1970).

    Article  Google Scholar 

  8. Dewey, W. C., Miller, H. H., Nagaswa, H.: Interactions betweenS andG 1 cells: effects on decay of synchrony. Exp. Cell Res.77, 73–78 (1973).

    Article  Google Scholar 

  9. Edmunds, L. N., Chuang, L., Jarrett, R. M., Terry, O. W.: Long-term persistence of free-running circadian rhythms of cell division inEuglena and the implication of autosynchrony. J. Interdiscipl. Cycle Res.2, 121–132 (1971).

    Google Scholar 

  10. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J.1, 445–566 (1961).

    Article  Google Scholar 

  11. Ghosh, A, K., Chance, B., Pye, E. K.: Metabolic coupling and synchronization of NADH oscillations in yeast cell populations. Arch. Biochem. Biophys.145, 319–331 (1971).

    Article  Google Scholar 

  12. Guttes, E., Devi, V. R., Guttes, S.: Synchronization of mitosis inPhysarum polycephalum by coalescence of postmitotic and premitotic plasmodial fragments. Experientia25, 615–616 (1969).

    Article  Google Scholar 

  13. Hale, J. K.: Ordinary differential equations. New York: Wiley-Interscience 1969.

    MATH  Google Scholar 

  14. Hanusse, P.: De l'existence d'un cycle limite dans l'evolution des systèmes chimiques ouverts. C. R. Acad. Sci. Ser.C 274, 1245–1247 (1972).

    Google Scholar 

  15. Hardeland, R.: Circadian rhythmicity of tyrosine aminotransferase activity in suspensions of isolated rat liver cells. J. Interdiscipl. Cycle Res.3, 109–114 (1972).

    Google Scholar 

  16. Hastings, J. W., Sweeney, B. M.: A persistent diurnal rhythm of luminescence in Gonyaulax polyedra. Biol. Bull.115, 440–458 (1958).

    Article  Google Scholar 

  17. Irwin, M. C.: A classification of elementary cycles. Topology9, 35–47 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  18. Kauffman, S.: Measuring the mitotic oscillator. Bull. Math. Biophys. (In press, 1974.)

  19. Kauffman, S., Wille, J. J.: The mitotic oscillation inPhysarum polycephalum. (In preparation.)

  20. Pavlidis, T.: Biological oscillators: Their mathematical analysis. New York: Academic Press 1973.

    Google Scholar 

  21. Rao, P. N., Johnson, R. T.: Mammalian cell fusion: Studies on the regulation of DNA synthesis and mitosis. Nature225, 159–164 (1970).

    Article  Google Scholar 

  22. Rusch, H. P., Sachsenmaier, W., Behrens, K., Gruter, V.: Synchronization of mitosis by the fusion of the plasmodia ofPhysarum polycephalum. J. Cell Biol.31, 204–209 (1966).

    Article  Google Scholar 

  23. Sachsenmaier, W., Remy, U., Plattner-Schobel, R.: Initiation of synchronous mitosis inPhysarum polycephalum. Exp. Cell Res.73, 41–48 (1972).

    Article  Google Scholar 

  24. Sheppard, J. J.: Human Color Perception. New York: Elseview 1968.

    Google Scholar 

  25. Tyson, J. J., Light, J. C.: Properties of two-component bimolecular and trimolecular chemical reaction systems. (In press.)

  26. Tyson, J. J., and Kauffman, S.: Continuous biochemical control of mitosis: phase synchronization and inhomogeneous oscillations. (In preparation, 1974.)

  27. Winfree, A. T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol.16, 15–42 (1967).

    Article  Google Scholar 

  28. Winfree, A. T.: The temporal morphology of a biological clock, in: Lectures on Mathematics in the Life Sciences,2 (Gerstenhaber, M., ed.), pp. 109–150. Providence, R. I.: Am. Math Soc. 1970.

    Google Scholar 

  29. Winfree, A. T.: Oscillatory glycolysis in yeast: The pattern of phase resetting by oxygen. Arch Biochem. Biophys.149, 388–401 (1972).

    Article  Google Scholar 

  30. Winfree, A. T.: Time and timelessness in biological clocks, in: Temporal Aspects of Therapeutics (Urquardt, J., Yates, F. E., eds.), pp. 35–57. New York: Plenum 1973.

    Google Scholar 

  31. Zeeman, E. C.: Differential equations for the heartbeat and nerve impulse, in: Towards a Theoretical Biology,4 (Waddington, C. H., ed.), pp. 8–67. Chicago: Aldine 1972.

    Google Scholar 

  32. Zeuthen, E., Williams, N. E.: Division-limiting morphogenetic processes inTetrahymena, in: Nucleic Acid Metabolism, Cell Differentiation and Cancer Growth (Cowdry, E. V., Seno, S., eds.), pp. 203–216. Oxford: Pergamon Press 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winfree, A.T. Patterns of phase compromise in biological cycles. J. Math. Biology 1, 73–93 (1974). https://doi.org/10.1007/BF02339491

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02339491

Keywords

Navigation