Skip to main content
Log in

Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Dopaminergic (DA) neurons of the mammalian midbrain exhibit unusually low firing frequencies in vitro. Furthermore, injection of depolarizing current induces depolarization block before high frequencies are achieved. The maximum steady and transient rates are about 10 and 20 Hz, respectively, despite the ability of these neurons to generate bursts at higher frequencies in vivo. We use a three-compartment model calibrated to reproduce DA neuron responses to several pharmacological manipulations to uncover mechanisms of frequency limitation. The model exhibits a slow oscillatory potential (SOP) dependent on the interplay between the L-type Ca2+ current and the small conductance K+ (SK) current that is unmasked by fast Na+ current block. Contrary to previous theoretical work, the SOP does not pace the steady spiking frequency in our model. The main currents that determine the spontaneous firing frequency are the subthreshold L-type Ca2+ and the A-type K+ currents. The model identifies the channel densities for the fast Na+ and the delayed rectifier K+ currents as critical parameters limiting the maximal steady frequency evoked by a depolarizing pulse. We hypothesize that the low maximal steady frequencies result from a low safety factor for action potential generation. In the model, the rate of Ca2+ accumulation in the distal dendrites controls the transient initial frequency in response to a depolarizing pulse. Similar results are obtained when the same model parameters are used in a multi-compartmental model with a realistic reconstructed morphology, indicating that the salient contributions of the dendritic architecture have been captured by the simpler model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amini, B., Clark, J. W., & Canavier, C. C. (1999). Calcium dynamics underlying pacemaker-like burst firing oscillations in midbrain dopaminergic neurons: A computational study. Journal of Neurophysiology, 82, 2249–2261.

    CAS  PubMed  Google Scholar 

  • Ascoli, G. A. (2006). Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nature Reviews Neuroscience, 7(4), 318–324.

    Article  CAS  PubMed  Google Scholar 

  • Bean, B. (2007). The action potential in mammalian central neurons. Nature Reviews Neuroscience, 8, 451–465.

    Article  CAS  PubMed  Google Scholar 

  • Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., & Seitelberger, F. (1973). Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. Journal of Neurological. Science, 20, 415–455.

    CAS  Google Scholar 

  • Blythe, S., Wokosin, D., Atherton, J., & Bevan, M. D. (2009). Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons. Journal of Neuroscience, 29(49), 15531–15541.

    Article  CAS  PubMed  Google Scholar 

  • Blythe, S., Atherton, J., & Bevan, M. (2007). Synaptic activation of dendritic AMPA and NMDA receptors generates transient high-frequency firing in substantia nigra dopamine neurons in vitro. Journal of Neurophysiology, 97, 2837–2850.

    Article  CAS  PubMed  Google Scholar 

  • Canavier, C. C., & Landry, R. S. (2006). An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. Journal of Neurophysiology, 96(5), 2549–2563.

    Article  CAS  PubMed  Google Scholar 

  • Carlson, N. R. (1999). Foundations of Physiological Psychology (4th ed.). Needham Heights, MA: Allyn and Bacon.

    Google Scholar 

  • Chan, C. S., Guzman, J. N., Ilijic, E., Mercer, J. N., Rick, C., Tkatch, T., et al. (2007). ‘Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature, 447(7148), 1081–1086.

    Article  CAS  PubMed  Google Scholar 

  • Chiodo, L., & Kapatos, G. (1992). Membrane properties of identified mesencephalic dopamine neurons in primary dissociated cell culture. Synapse, 11, 294–309.

    Article  CAS  PubMed  Google Scholar 

  • Deister, C. A., Teagarden, M. A., Wilson, C. J. and Paladini, C. A. (2009), An intrinsic neural oscillator underlies dopaminergic neuron bursting, Journal of Neuroscience, in press.

  • Durante, P., Cardenas, C., Whittaker, J., Kitai, S., & Scroggs, R. (2004). Low-threshold L-type calcium channels in rat dopamine neurons. Journal of Neurophysiology, 91, 1450–1454.

    Article  CAS  PubMed  Google Scholar 

  • Gentet, L. J., & Williams, S. R. (2007). Dopamine gates action potential backpropagation in midbrain dopaminergic neurons. Journal of Neuroscience, 27(8), 1892–1901.

    Article  CAS  PubMed  Google Scholar 

  • Grace, A. A., & Bunney, B. S. (1984a). The control of firing pattern in nigral dopamine neurons: single spike firing. Journal of Neuroscience, 4, 2866–2876.

    CAS  PubMed  Google Scholar 

  • Grace, A. A., & Bunney, B. S. (1984b). The control of firing pattern in the nigral dopamine neurons: Burst firing. Journal of Neuroscience, 4, 2877–2890.

    CAS  PubMed  Google Scholar 

  • Guzman, J. N., Sánchez-Padilla, J., Chan, C. S., & Surmeier, D. J. (2009). Robust pacemaking in substantia nigra dopaminergic neurons. Journal of Neuroscience, 29(35), 11011–11019.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, J., Tse, T. E., & Levitan, E. S. (2003). Long-term K+ channel-mediated dampening of dopamine neuron excitability by the antipsychotic drug haloperidol. Journal of Neuroscience, 23(34), 10859–10866.

    CAS  PubMed  Google Scholar 

  • Hahn, J., Kullmann, P. H., Horn, J. P., & Levitan, E. S. (2006). D2 autoreceptors chronically enhance dopamine neuron pacemaker activity. Journal of Neuroscience, 26(19), 5240–5247.

    Article  CAS  PubMed  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computations, 9(6), 1179–1209.

    Article  CAS  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (2001). Neuron: A tool for neuroscientists. The Neuroscientist, 7, 123–135.

    Article  CAS  PubMed  Google Scholar 

  • Hyland, B. I., Reynolds, J. N. J., Hay, J., Perk, C. G., & Miller, R. (2002). Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience, 114, 475–492.

    Article  CAS  PubMed  Google Scholar 

  • Khaliq, Z. M., & Bean, B. P. (2008). Dynamic, Nonlinear Feedback Regulation of Slow Pacemaking by A-Type Potassium Current in Ventral Tegmental Area Neurons. Journal of Neuroscience, 28(43), 10905–10917.

    Article  CAS  PubMed  Google Scholar 

  • Kang, Y., & Kitai, S. T. (1993a). Calcium spike underlying rhythmic firing in dopaminergic neurons of the rat substantia nigra. Neuroscience Research, 18, 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Kang, Y., & Kitai, S. T. (1993b). A whole cell patch-clamp study on the pacemaker potential in dopaminergic neurons of the rat substantia nigra compacta. Neuroscience Research, 18, 209–221.

    Article  CAS  PubMed  Google Scholar 

  • Komendantov, A. O., & Ascoli, G. A. (2009). Dendritic excitability and neuronal morphology as determinants of synaptic efficacy. Journal of Neurophysiology, 101(4), 1847–1866.

    Article  PubMed  Google Scholar 

  • Komendantov, A. O., Komendantova, O. G., Johnson, S. W., & Canavier, C. C. (2004). A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. Journal of Neurophysiology, 91, 346–357.

    Article  CAS  PubMed  Google Scholar 

  • Koyama, S., & Appel, S. (2006). A-type K + current of dopamine and GABA neurons in the ventral tegmental area. Journal of Neurophysiology, 96, 544–554.

    Article  CAS  PubMed  Google Scholar 

  • Kullmann, P. H., Wheeler, D. W., Beacom, J., & Horn, J. P. (2004). Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT. Journal of Neurophysiology, 91(1), 542–554.

    Article  PubMed  Google Scholar 

  • Kuznetsov, A. S., Kopell, N. J., & Wilson, C. J. (2006). Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. Journal of Neurophysiology, 95, 932–937.

    Article  CAS  PubMed  Google Scholar 

  • Liss, B., Franz, O., Sewing, S., Bruns, R., Neuhoff, H., & Roeper, J. (2001). Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO Journal, 20(20), 5715–5724.

    Article  CAS  PubMed  Google Scholar 

  • Magee, J. C., & Johnston, D. (1995). Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. Journal of Physiology, 487, 67–90.

    CAS  PubMed  Google Scholar 

  • Medvedev, G. S., & Kopell, N. (2001). Synchronization and transient dynamics in chains of electrically coupled FitzHugh-Nagumo oscillations. SIAM Journal of Applied Mathematics, 61, 1763–1801.

    Article  Google Scholar 

  • Medvedev, G. S., Wilson, C. J., Callaway, J. C., & Kopell, N. (2003). Dendritic synchrony and transient dynamics in a coupled oscillator model of the dopaminergic neuron. Journal of Computational Neuroscience, 15, 53–69.

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard, S., Flatman, J. A., & Engberg, I. (1993). Nifedipine-and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. Journal of Physiology (London), 466, 727–747.

    CAS  Google Scholar 

  • Ogata, N., & Tatebayashi, H. (1992). Na + current kinetics are not the determinants of the action potential duration in neurons of the rat ventral tegmental area. Brain Research Bulletin, 29, 691–695.

    Article  CAS  PubMed  Google Scholar 

  • Ping, H. X., & Shepard, P. D. (1996). Apamin-sensitive Ca2+-activated K+ channels regulate pacemaker activity in nigral neurons. NeuroReport, 7, 809–814.

    Article  CAS  PubMed  Google Scholar 

  • Ping, H. X., & Shepard, P. D. (1999). Blockade of SK-type Ca2+-activated K + channels uncovers a Ca2+−dependent slow afterdepolarization in nigral dopamine neurons. Journal of Neurophysiology, 81, 977–984.

    CAS  PubMed  Google Scholar 

  • Puopolo, M., Raviola, E., & Bean, B. P. (2007). Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. Journal of Neuroscience, 27, 645–656.

    Article  CAS  PubMed  Google Scholar 

  • Putzier, I., Kullmann, P. H. M., Horn, J. P., & Levitan, E. S. (2009a). Dopamine neuron responses depend exponentially on pacemaker interval. Journal of Neurophysiology, 101(2), 926–33. Epub 2008 Dec 10.

    Article  Google Scholar 

  • Putzier, I., Kullmann, P. H. M., Horn, J. P., & Levitan, E. S. (2009b). Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. Journal of Neuroscience, 29(49), 15414–15419.

    Article  CAS  Google Scholar 

  • Richards, C. D., Shiroyama, T., & Kitai, S. T. (1997). Electrophysiological and immunocytochemical characteristics of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience, 80, 545–557.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36, 241–263.

    Article  CAS  PubMed  Google Scholar 

  • Segev, D., & Korngreen, A. (2007). Kinetics of two voltage-gated K+ conductances in substantia nigra dopaminergic neurons. Brain Research, 1173, 27–35.

    Article  CAS  PubMed  Google Scholar 

  • Shepard, P. D., & Bunney, B. S. (1991). Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca2+-activated K+ conductance. Experimental Brain Research, 86, 141–150.

    Article  CAS  Google Scholar 

  • Silva, N., Pechura, C., & Barker, J. (1990). Postnatal rat nigrostriatal dopaminergic neurons exhibit five types of potassium conductances. Journal of Neurophysiology, 64(1), 262–272.

    CAS  PubMed  Google Scholar 

  • Strange, P. G. (2001). Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacology Review, 53, 119–133.

    CAS  Google Scholar 

  • Surmeier, D. J., Mercer, J. N., & Chan, C. S. (2005). Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? Current Opinion in Neurobiology, 15, 312–318.

    Article  CAS  PubMed  Google Scholar 

  • Takada, M., Kang, Y., & Imanishi, M. (2001). Immunohistochemical localization of voltage-gated calcium channels in substantia nigra dopamine neurons. European Journal of Neuroscience, 13, 757–762.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, R. C. (2009). The plasma membrane calcium ATPase (PMCA) of neurones is electroneutral and exchanges 2 H+ for each Ca2+ or Ba2+ ion extruded. Journal of Physiology, 587, 315–327.

    Article  CAS  PubMed  Google Scholar 

  • Vetter, P., Roth, A., & Hausser, M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85, 926–937.

    CAS  PubMed  Google Scholar 

  • Wilson, C. J., & Callaway, J. C. (2000). A coupled oscillator model of the dopaminergic neuron of the substantia nigra. Journal of Neurophysiology, 83, 3084–3100.

    CAS  PubMed  Google Scholar 

  • Wise, R. A. (2004). Dopamine, learning and motivation. Nature Review Neuroscience, 5, 483–494.

    Article  CAS  Google Scholar 

  • Wolfart, J., Neuhoff, H., Franz, O., & Roeper, J. (2001). Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. Journal of Neuroscience, 21(10), 3443–3456.

    CAS  PubMed  Google Scholar 

  • Wolfart, J., & Roeper, J. (2002). Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. Journal of Neuroscience, 22(9), 3404–3413.

    CAS  PubMed  Google Scholar 

  • Yang, X., & Callaway, J. (2006). Dendritic contribution to hyperpolarization recorded at the soma in SNc dopaminergic neurons. Society of Neuroscience Annual Meeting, abstract 254.7.

  • Yung, W. H., Hausser, M. A., & Jack, J. J. (1991). Electrophysiology of dopaminergic and non-dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro. Journal of Physiology, 436, 643–667.

    CAS  PubMed  Google Scholar 

  • Zweifel, L. S., Parker, J. G., Lobb, C. J., Rainwater, A., Wall, V. Z., Fadok, J. P., et al. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. PNAS, 106, 7281–7288.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants NS 37963 and 61097 to CCC, National Science Foundation grant DMS-0817717 to ASK, and National Institutes of Health grant MH 079276 to CAP. AYK thanks M. Hines and N. Carnevale for advice on NEURON, support from the IUPUI Center for Mathematical Biosciences, Department of Mathematical Sciences at IUPUI, and B. Boukai, C. Wilson for consultation on fitting calcium concentration, and C. Paladini’s and C. Wilson’s labs for help with literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen C. Canavier.

Additional information

Action Editor: Charles Wilson

Appendix

Appendix

In the following equations the subscript “i” indicates a nonspecific compartment, whereas the subscripts “d”, “p”, and “s” indicate distal dendritic compartment, proximal dendritic compartment and somatic compartment respectively. All compartments are considered cylindrical in shape with diameter and length given by di and Li, respectively.

Equations governing membrane potential in each compartment:

$$ \begin{array}{*{20}{c}} { - {{\hbox{C}}_{\rm{m}}}\left( {{{{\hbox{d}}{{\hbox{V}}_{\rm{d}}}} \mathord{\left/{\vphantom {{{\hbox{d}}{{\hbox{V}}_{\rm{d}}}} {\hbox{dt}}}} \right.} {\hbox{dt}}}} \right) = {{\hbox{I}}_{{\rm{Na,d}}}} + {{\hbox{I}}_{{\rm{KA,d}}}} + {{\hbox{I}}_{{\rm{KV,d}}}} + {{\hbox{I}}_{{\rm{SK,d}}}} + {{\hbox{I}}_{{\rm{NaP,d}}}} + {{\hbox{I}}_{{\rm{Ca,L,d}}}} + {{\hbox{I}}_{{\rm{CaP,d}}}} + {{\hbox{I}}_{{\rm{L,d}}}} + {{\hbox{I}}_{\rm{dp}}}} \hfill \\{ - {{\hbox{C}}_{\rm{m}}}\left( {{{{\hbox{d}}{{\hbox{V}}_{\rm{p}}}} \mathord{\left/{\vphantom {{{\hbox{d}}{{\hbox{V}}_{\rm{p}}}} {\hbox{dt}}}} \right.} {\hbox{dt}}}} \right) = {{\hbox{I}}_{{\rm{Na,p}}}} + {{\hbox{I}}_{{\rm{KA,p}}}} + {{\hbox{I}}_{{\rm{KV,p}}}} + {{\hbox{I}}_{{\rm{SK,p}}}} + {{\hbox{I}}_{{\rm{NaP,p}}}} + {{\hbox{I}}_{{\rm{Ca,L,p}}}} + {{\hbox{I}}_{{\rm{CaP,p}}}} + {{\hbox{I}}_{{\rm{L,p}}}} + {{\hbox{I}}_{\rm{pd}}} + {{\hbox{I}}_{\rm{ps}}}} \hfill \\{ - {{\hbox{C}}_{\rm{m}}}\left( {{{{\hbox{d}}{{\hbox{V}}_{\rm{s}}}} \mathord{\left/{\vphantom {{{\hbox{d}}{{\hbox{V}}_{\rm{s}}}} {\hbox{dt}}}} \right.} {\hbox{dt}}}} \right) = {{\hbox{I}}_{{\rm{Na,s}}}} + {{\hbox{I}}_{{\rm{KA,s}}}} + {{\hbox{I}}_{{\rm{KV,s}}}} + {{\hbox{I}}_{{\rm{SK,s}}}} + {{\hbox{I}}_{{\rm{NaP,s}}}} + {{\hbox{I}}_{{\rm{Ca,L,s}}}} + {{\hbox{I}}_{{\rm{CaP,s}}}} + {{\hbox{I}}_{{\rm{L,s}}}} + {{\hbox{I}}_{\rm{sp}}} - {{\hbox{I}}_{\rm{stim}}}} \hfill \\\end{array} $$

Here Istim is the stimulus current applied to the soma.

Linear leakage current:

$$ {{\hbox{I}}_{{\rm{L,i}}}} = {{\hbox{I}}_{{\rm{L,Na,i}}}} + {{\hbox{I}}_{{\rm{L}}{\rm{.K,i}}}} + {{\hbox{I}}_{{\rm{L,Ca,I}}}} $$

where

$$ \begin{array}{*{20}{c}} {{{\hbox{I}}_{{\rm{L,K,i}}}} = {{\hbox{g}}_{{\rm{L,K,i}}}}\left( {{{\hbox{V}}_{\rm{i}}}{ - }{{\hbox{E}}_{\rm{K}}}} \right);\,{{\hbox{I}}_{{\rm{L,Na,i}}}} = {{\hbox{g}}_{{\rm{L,Na,i}}}}\left( {{{\hbox{V}}_{\rm{i}}}{ - }{{\hbox{E}}_{{\rm{Na,i}}}}} \right);\,{{\hbox{I}}_{{\rm{L,Ca,i}}}} = {{\hbox{g}}_{{\rm{L,Ca,i}}}}\left( {{{\hbox{V}}_{\rm{i}}}{ - }{{\hbox{E}}_{\rm{ca}}}} \right);} \hfill \\{{{\hbox{E}}_{{\rm{Na,i}}}} = \left( {{{\hbox{RT}} \mathord{\left/{\vphantom {{\hbox{RT}} {\hbox{F}}}} \right.} {\hbox{F}}}} \right)\ln \left( {{{{{\left[ {\hbox{Na}} \right]}_{\rm{out}}}} \mathord{\left/{\vphantom {{{{\left[ {\hbox{Na}} \right]}_{\rm{out}}}} {{{\left[ {\hbox{Na}} \right]}_{{\rm{in,i}}}}}}} \right.} {{{\left[ {\hbox{Na}} \right]}_{{\rm{in,i}}}}}}} \right)} \hfill \\\end{array} $$

Sodium pump current:

$$ {{{I_{NaP,i}} = {I_{NaP,\max, i}}} \mathord{\left/{\vphantom {{{I_{NaP,i}} = {I_{NaP,\max, i}}} {\left( {1 + {{\left( {{{{{{K_{m,Na}}} \mathord{\left/{\vphantom {{{K_{m,Na}}} {\left[ {Na} \right]}}} \right.} {\left[ {Na} \right]}}}_{_{in,i}}}} \right)}^{1.5}}} \right)}}} \right.} {\left( {1 + {{\left( {{{{{{K_{m,Na}}} \mathord{\left/{\vphantom {{{K_{m,Na}}} {\left[ {Na} \right]}}} \right.} {\left[ {Na} \right]}}}_{_{in,i}}}} \right)}^{1.5}}} \right)}} $$

Sodium balance:

$$ \begin{array}{*{20}{c}} {{{{\hbox{d}}{{\left[ {\hbox{Na}} \right]}_{{\rm{in,d}}}}} \mathord{\left/{\vphantom {{{\hbox{d}}{{\left[ {\hbox{Na}} \right]}_{{\rm{in,d}}}}} {\hbox{dt}}}} \right.} {\hbox{dt}}} = {{4 \times {f_{\rm{d}}}\left( { - {{\hbox{I}}_{{\rm{Na,d}}}} - {{\hbox{I}}_{{\rm{L,Na,d}}}} - {3}{{\hbox{I}}_{{\rm{NaP,d}}}}} \right)} \mathord{\left/{\vphantom {{4 \times {f_{\rm{d}}}\left( { - {{\hbox{I}}_{{\rm{Na,d}}}} - {{\hbox{I}}_{{\rm{L,Na,d}}}} - {3}{{\hbox{I}}_{{\rm{NaP,d}}}}} \right)} {\left( {{{\hbox{d}}_{\rm{d}}}{\hbox{F}}} \right)}}} \right.} {\left( {{{\hbox{d}}_{\rm{d}}}{\hbox{F}}} \right)}}} \hfill \\{{{{\hbox{d}}{{\left[ {\hbox{Na}} \right]}_{{\rm{in,p}}}}} \mathord{\left/{\vphantom {{{\hbox{d}}{{\left[ {\hbox{Na}} \right]}_{{\rm{in,p}}}}} {{\hbox{dt}} = 4 \times {f_{\rm{p}}}{{\left( { - {{\hbox{I}}_{{\rm{Na,p}}}} - {{\hbox{I}}_{{\rm{L,Na,p}}}} - 3{{\hbox{I}}_{{\rm{NaP,p}}}}} \right)} \mathord{\left/{\vphantom {{\left( { - {{\hbox{I}}_{{\rm{Na,p}}}} - {{\hbox{I}}_{{\rm{L,Na,p}}}} - 3{{\hbox{I}}_{{\rm{NaP,p}}}}} \right)} {\left( {{{\hbox{d}}_{\rm{p}}}{\hbox{F}}} \right)}}} \right.} {\left( {{{\hbox{d}}_{\rm{p}}}{\hbox{F}}} \right)}}}}} \right.} {{\hbox{dt}} = 4 \times {f_{\rm{p}}}{{\left( { - {{\hbox{I}}_{{\rm{Na,p}}}} - {{\hbox{I}}_{{\rm{L,Na,p}}}} - 3{{\hbox{I}}_{{\rm{NaP,p}}}}} \right)} \mathord{\left/{\vphantom {{\left( { - {{\hbox{I}}_{{\rm{Na,p}}}} - {{\hbox{I}}_{{\rm{L,Na,p}}}} - 3{{\hbox{I}}_{{\rm{NaP,p}}}}} \right)} {\left( {{{\hbox{d}}_{\rm{p}}}{\hbox{F}}} \right)}}} \right.} {\left( {{{\hbox{d}}_{\rm{p}}}{\hbox{F}}} \right)}}}}} \hfill \\{{{{\hbox{d}}{{\left[ {\hbox{Na}} \right]}_{{\rm{in,s}}}}} \mathord{\left/{\vphantom {{{\hbox{d}}{{\left[ {\hbox{Na}} \right]}_{{\rm{in,s}}}}} {{\hbox{dt}} = 4 \times {f_{\rm{s}}}{{\left( { - {{\hbox{I}}_{{\rm{Na,s}}}} - {{\hbox{I}}_{{\rm{L,Na,s}}}} - 3{{\hbox{I}}_{{\rm{NaP,s}}}}} \right)} \mathord{\left/{\vphantom {{\left( { - {{\hbox{I}}_{{\rm{Na,s}}}} - {{\hbox{I}}_{{\rm{L,Na,s}}}} - 3{{\hbox{I}}_{{\rm{NaP,s}}}}} \right)} {\left( {{{\hbox{d}}_{\rm{s}}}{\hbox{F}}} \right)}}} \right.} {\left( {{{\hbox{d}}_{\rm{s}}}{\hbox{F}}} \right)}}}}} \right.} {{\hbox{dt}} = 4 \times {f_{\rm{s}}}{{\left( { - {{\hbox{I}}_{{\rm{Na,s}}}} - {{\hbox{I}}_{{\rm{L,Na,s}}}} - 3{{\hbox{I}}_{{\rm{NaP,s}}}}} \right)} \mathord{\left/{\vphantom {{\left( { - {{\hbox{I}}_{{\rm{Na,s}}}} - {{\hbox{I}}_{{\rm{L,Na,s}}}} - 3{{\hbox{I}}_{{\rm{NaP,s}}}}} \right)} {\left( {{{\hbox{d}}_{\rm{s}}}{\hbox{F}}} \right)}}} \right.} {\left( {{{\hbox{d}}_{\rm{s}}}{\hbox{F}}} \right)}}}}} \hfill \\\end{array} $$

Calcium pump current:

$$ {{{{\hbox{I}}_{{\rm{CaP,i}}}} = {{\hbox{I}}_{{\rm{CaP,max}}}}{{\left[ {{\hbox{C}}{{\hbox{a}}^{2 + }}} \right]}_{{\rm{in,i}}}}} \mathord{\left/{\vphantom {{{{\hbox{I}}_{{\rm{CaP,i}}}} = {{\hbox{I}}_{{\rm{CaP,max}}}}{{\left[ {{\hbox{C}}{{\hbox{a}}^{2 + }}} \right]}_{{\rm{in,i}}}}} {\left( {{{\left[ {{\hbox{C}}{{\hbox{a}}^{2 + }}} \right]}_{{\rm{in,i}}}} + {{\hbox{K}}_{{\rm{m,CaP}}}}} \right)}}} \right.} {\left( {{{\left[ {{\hbox{C}}{{\hbox{a}}^{2 + }}} \right]}_{{\rm{in,i}}}} + {{\hbox{K}}_{{\rm{m,CaP}}}}} \right)}} $$

Calcium Balance:

$$ {{{\hbox{d}}{{\left[ {{\hbox{C}}{{\hbox{a}}^{2 + }}} \right]}_{{\rm{in,i}}}}} \mathord{\left/{\vphantom {{{\hbox{d}}{{\left[ {{\hbox{C}}{{\hbox{a}}^{2 + }}} \right]}_{{\rm{in,i}}}}} {{\hbox{dt}} = 2 \times {f_{\rm{Ca}}}{{\left( {{{\hbox{I}}_{{\rm{Ca,L,i}}}} + {{\hbox{I}}_{{\rm{CaP,i}}}} + {{\hbox{I}}_{{\rm{L,Ca,i}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\hbox{I}}_{{\rm{Ca,L,i}}}} + {{\hbox{I}}_{{\rm{CaP,i}}}} + {{\hbox{I}}_{{\rm{L,Ca,i}}}}} \right)} {\left( {{{\hbox{d}}_{\rm{i}}}{\hbox{F}}} \right)}}} \right.} {\left( {{{\hbox{d}}_{\rm{i}}}{\hbox{F}}} \right)}}}}} \right.} {{\hbox{dt}} = 2 \times {f_{\rm{Ca}}}{{\left( {{{\hbox{I}}_{{\rm{Ca,L,i}}}} + {{\hbox{I}}_{{\rm{CaP,i}}}} + {{\hbox{I}}_{{\rm{L,Ca,i}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\hbox{I}}_{{\rm{Ca,L,i}}}} + {{\hbox{I}}_{{\rm{CaP,i}}}} + {{\hbox{I}}_{{\rm{L,Ca,i}}}}} \right)} {\left( {{{\hbox{d}}_{\rm{i}}}{\hbox{F}}} \right)}}} \right.} {\left( {{{\hbox{d}}_{\rm{i}}}{\hbox{F}}} \right)}}}} $$

Fast sodium current:

$$ \begin{array}{*{20}{c}} {{{\text{I}}_{{\text{Na,i}}}} = {{\text{g}}_{{\text{Na,i}}}}{{\text{m}}^3}_{\text{i}}{{\text{h}}_{\text{i}}}\left( {{{\text{V}}_{\text{i}}} - {{\text{E}}_{{\text{Na,i}}}}} \right)} \hfill \\ {{{{\text{d}}{{\text{m}}_{\text{i}}}} \mathord{\left/{\vphantom {{{\text{d}}{{\text{m}}_{\text{i}}}} {{\text{dt}}}}} \right.\kern-\nulldelimiterspace} {{\text{dt}}}} = {{\left[ {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{{\text{half,m,i}}}} - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{{\text{half,m,i}}}} - {{\text{V}}_{\text{i}}}} \right)} {6.0}}} \right.\kern-\nulldelimiterspace} {6.0}}} \right]} \right\} - {{\text{m}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{{\text{half,m,i}}}} - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{{\text{half,m,i}}}} - {{\text{V}}_{\text{i}}}} \right)} {6.0}}} \right.\kern-\nulldelimiterspace} {6.0}}} \right]} \right\} - {{\text{m}}_{\text{i}}}}}} \right]} \mathord{\left/{\vphantom {{\left[ {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{{\text{half,m,i}}}} - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{{\text{half,m,i}}}} - {{\text{V}}_{\text{i}}}} \right)} {6.0}}} \right.\kern-\nulldelimiterspace} {6.0}}} \right]} \right\} - {{\text{m}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{{\text{half,m,i}}}} - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{{\text{half,m,i}}}} - {{\text{V}}_{\text{i}}}} \right)} {6.0}}} \right.\kern-\nulldelimiterspace} {6.0}}} \right]} \right\} - {{\text{m}}_{\text{i}}}}}} \right]} {{\tau _{\text{m}}}}}} \right.\kern-\nulldelimiterspace} {{\tau _{\text{m}}}}}} \hfill \\ {{{{\text{d}}{{\text{h}}_{\text{i}}}} \mathord{\left/{\vphantom {{{\text{d}}{{\text{h}}_{\text{i}}}} {{\text{dt}} = {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} {7.8}}} \right.\kern-\nulldelimiterspace} {7.8}}} \right]} \right\} - {{\text{h}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} {7.8}}} \right.\kern-\nulldelimiterspace} {7.8}}} \right]} \right\} - {{\text{h}}_{\text{i}}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} {7.8}}} \right.\kern-\nulldelimiterspace} {7.8}}} \right]} \right\} - {{\text{h}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} {7.8}}} \right.\kern-\nulldelimiterspace} {7.8}}} \right]} \right\} - {{\text{h}}_{\text{i}}}}}} \right)} {{\tau _{\text{h}}}}}} \right.\kern-\nulldelimiterspace} {{\tau _{\text{h}}}}}}}} \right.\kern-\nulldelimiterspace} {{\text{dt}} = {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} {7.8}}} \right.\kern-\nulldelimiterspace} {7.8}}} \right]} \right\} - {{\text{h}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} {7.8}}} \right.\kern-\nulldelimiterspace} {7.8}}} \right]} \right\} - {{\text{h}}_{\text{i}}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} {7.8}}} \right.\kern-\nulldelimiterspace} {7.8}}} \right]} \right\} - {{\text{h}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{{\text{half,h,i}}}} - {{\text{V}}_{\text{i}}}} \right)} {7.8}}} \right.\kern-\nulldelimiterspace} {7.8}}} \right]} \right\} - {{\text{h}}_{\text{i}}}}}} \right)} {{\tau _{\text{h}}}}}} \right.\kern-\nulldelimiterspace} {{\tau _{\text{h}}}}}}}} \hfill \\ {{\tau _{\text{m}}} = {{1.0} \mathord{\left/{\vphantom {{1.0} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + 45.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 45.0} \right)} {1.5}}} \right.\kern-\nulldelimiterspace} {1.5}}} \right]} \right\} - {{1.0} \mathord{\left/{\vphantom {{1.0} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + 65} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 65} \right)} {0.5}}} \right.\kern-\nulldelimiterspace} {0.5}}} \right]} \right\} + 0.04}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + 65} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 65} \right)} {0.5}}} \right.\kern-\nulldelimiterspace} {0.5}}} \right]} \right\} + 0.04}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + 45.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 45.0} \right)} {1.5}}} \right.\kern-\nulldelimiterspace} {1.5}}} \right]} \right\} - {{1.0} \mathord{\left/{\vphantom {{1.0} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + 65} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 65} \right)} {0.5}}} \right.\kern-\nulldelimiterspace} {0.5}}} \right]} \right\} + 0.04}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + 65} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 65} \right)} {0.5}}} \right.\kern-\nulldelimiterspace} {0.5}}} \right]} \right\} + 0.04}}}}} \hfill \\ {{\tau _{\text{h}}} = {{168.0} \mathord{\left/{\vphantom {{168.0} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + 29} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 29} \right)} {4.5}}} \right.\kern-\nulldelimiterspace} {4.5}}} \right]} \right\} - {{168.0} \mathord{\left/{\vphantom {{168.0} {\left\{ {1 + \exp \left( {\left[ {{{\left( {{{\text{V}}_{\text{i}}} + 49} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 49} \right)} {2.0}}} \right.\kern-\nulldelimiterspace} {2.0}}} \right]} \right)} \right\} + 2.0}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left( {\left[ {{{\left( {{{\text{V}}_{\text{i}}} + 49} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 49} \right)} {2.0}}} \right.\kern-\nulldelimiterspace} {2.0}}} \right]} \right)} \right\} + 2.0}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + 29} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 29} \right)} {4.5}}} \right.\kern-\nulldelimiterspace} {4.5}}} \right]} \right\} - {{168.0} \mathord{\left/{\vphantom {{168.0} {\left\{ {1 + \exp \left( {\left[ {{{\left( {{{\text{V}}_{\text{i}}} + 49} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 49} \right)} {2.0}}} \right.\kern-\nulldelimiterspace} {2.0}}} \right]} \right)} \right\} + 2.0}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left( {\left[ {{{\left( {{{\text{V}}_{\text{i}}} + 49} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 49} \right)} {2.0}}} \right.\kern-\nulldelimiterspace} {2.0}}} \right]} \right)} \right\} + 2.0}}}}} \hfill \\ \end{array} $$

Calcium current:

$$ \begin{array}{*{20}{c}} {{{\text{I}}_{{\text{Ca,}}}}{\text{L,i}} = {{\text{g}}_{{\text{Ca,L}}}}{{\text{d}}_{{\text{L,i}}}}\left( {{{\text{V}}_{\text{i}}}{\text{ - }}{{\text{E}}_{{\text{Ca}}}}} \right)} \hfill \\ {{{{\text{d}}{{\text{d}}_{{\text{L,i}}}}} \mathord{\left/{\vphantom {{{\text{d}}{{\text{d}}_{{\text{L,i}}}}} {{\text{dt}} = {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_i} + 45.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_i} + 45.0} \right)} {0.5}}} \right.\kern-\nulldelimiterspace} {0.5}}} \right]} \right\} - {{\text{d}}_{{\text{L,i}}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_i} + 45.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_i} + 45.0} \right)} {0.5}}} \right.\kern-\nulldelimiterspace} {0.5}}} \right]} \right\} - {{\text{d}}_{{\text{L,i}}}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_i} + 45.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_i} + 45.0} \right)} {0.5}}} \right.\kern-\nulldelimiterspace} {0.5}}} \right]} \right\} - {{\text{d}}_{{\text{L,i}}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_i} + 45.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_i} + 45.0} \right)} {0.5}}} \right.\kern-\nulldelimiterspace} {0.5}}} \right]} \right\} - {{\text{d}}_{{\text{L,i}}}}}}} \right)} {{\tau _{{\text{dL}}}}}}} \right.\kern-\nulldelimiterspace} {{\tau _{{\text{dL}}}}}}}}} \right.\kern-\nulldelimiterspace} {{\text{dt}} = {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_i} + 45.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_i} + 45.0} \right)} {0.5}}} \right.\kern-\nulldelimiterspace} {0.5}}} \right]} \right\} - {{\text{d}}_{{\text{L,i}}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_i} + 45.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_i} + 45.0} \right)} {0.5}}} \right.\kern-\nulldelimiterspace} {0.5}}} \right]} \right\} - {{\text{d}}_{{\text{L,i}}}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_i} + 45.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_i} + 45.0} \right)} {0.5}}} \right.\kern-\nulldelimiterspace} {0.5}}} \right]} \right\} - {{\text{d}}_{{\text{L,i}}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_i} + 45.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_i} + 45.0} \right)} {0.5}}} \right.\kern-\nulldelimiterspace} {0.5}}} \right]} \right\} - {{\text{d}}_{{\text{L,i}}}}}}} \right)} {{\tau _{{\text{dL}}}}}}} \right.\kern-\nulldelimiterspace} {{\tau _{{\text{dL}}}}}}}}} \hfill \\ {{\tau _{{\text{dL}}}} = {\tau _{{\text{Ca}}}}\exp \left[ { - {{{{\left( {{{\text{V}}_{\text{i}}} + 70.0} \right)}^2}} \mathord{\left/{\vphantom {{{{\left( {{{\text{V}}_{\text{i}}} + 70.0} \right)}^2}} {625}}} \right.\kern-\nulldelimiterspace} {625}}} \right] + 0.3} \hfill \\ \end{array} $$

Delayed rectifier current:

$$ \begin{array}{*{20}{c}} {{{\text{I}}_{{\text{KV,i}}}} = {{\text{g}}_{{\text{KV,i}}}}{{\text{n}}^3}_{\text{i}}\left( {{{\text{V}}_{\text{i}}} - {{\text{E}}_{{\text{Ca}}}}} \right)} \hfill \\ {{{{\text{d}}{{\text{n}}_{\text{i}}}} \mathord{\left/{\vphantom {{{\text{d}}{{\text{n}}_{\text{i}}}} {{\text{dt}} = {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} {12.0}}} \right.\kern-\nulldelimiterspace} {12.0}}} \right]} \right\} - {{\text{n}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} {12.0}}} \right.\kern-\nulldelimiterspace} {12.0}}} \right]} \right\} - {{\text{n}}_{\text{i}}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} {12.0}}} \right.\kern-\nulldelimiterspace} {12.0}}} \right]} \right\} - {{\text{n}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} {12.0}}} \right.\kern-\nulldelimiterspace} {12.0}}} \right]} \right\} - {{\text{n}}_{\text{i}}}}}} \right)} {{\tau _{\text{n}}}}}} \right.\kern-\nulldelimiterspace} {{\tau _{\text{n}}}}}}}} \right.\kern-\nulldelimiterspace} {{\text{dt}} = {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} {12.0}}} \right.\kern-\nulldelimiterspace} {12.0}}} \right]} \right\} - {{\text{n}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} {12.0}}} \right.\kern-\nulldelimiterspace} {12.0}}} \right]} \right\} - {{\text{n}}_{\text{i}}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} {12.0}}} \right.\kern-\nulldelimiterspace} {12.0}}} \right]} \right\} - {{\text{n}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} \mathord{\left/{\vphantom {{\left( { - 25.0 - {{\text{V}}_{\text{i}}}} \right)} {12.0}}} \right.\kern-\nulldelimiterspace} {12.0}}} \right]} \right\} - {{\text{n}}_{\text{i}}}}}} \right)} {{\tau _{\text{n}}}}}} \right.\kern-\nulldelimiterspace} {{\tau _{\text{n}}}}}}}} \hfill \\ {{\tau _{\text{n}}} = {{{\tau _{{\text{Kv}}}}} \mathord{\left/{\vphantom {{{\tau _{{\text{Kv}}}}} {\left\{ {1 + \exp \left[ {{{\left( {{V_i} + 39.0} \right)} \mathord{\left/{\vphantom {{\left( {{V_i} + 39.0} \right)} {8.0}}} \right.\kern-\nulldelimiterspace} {8.0}}} \right]} \right\}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{V_i} + 39.0} \right)} \mathord{\left/{\vphantom {{\left( {{V_i} + 39.0} \right)} {8.0}}} \right.\kern-\nulldelimiterspace} {8.0}}} \right]} \right\}}} + 1.0} \hfill \\ \end{array} $$

Transient outward potassium current:

$$ \begin{array}{*{20}{c}} {{{\text{I}}_{{\text{KA,i}}}} = {{\text{g}}_{{\text{KA,i}}}}{\text{p}}_{\text{i}}^3{{\text{q}}_{\text{i}}}\left( {{{\text{V}}_{\text{i}}}{{\text{E}}_{\text{K}}}} \right)} \hfill \\ {{{{\text{d}}{{\text{q}}_{\text{i}}}} \mathord{\left/{\vphantom {{{\text{d}}{{\text{q}}_{\text{i}}}} {{\text{dt}} = {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} {{{\text{S}}_{{\text{q,i}}}}}}} \right.\kern-\nulldelimiterspace} {{{\text{S}}_{{\text{q,i}}}}}}} \right]} \right\} - {{\text{q}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} {{{\text{S}}_{{\text{q,i}}}}}}} \right.\kern-\nulldelimiterspace} {{{\text{S}}_{{\text{q,i}}}}}}} \right]} \right\} - {{\text{q}}_{\text{i}}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} {{{\text{S}}_{{\text{q,i}}}}}}} \right.\kern-\nulldelimiterspace} {{{\text{S}}_{{\text{q,i}}}}}}} \right]} \right\} - {{\text{q}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} {{{\text{S}}_{{\text{q,i}}}}}}} \right.\kern-\nulldelimiterspace} {{{\text{S}}_{{\text{q,i}}}}}}} \right]} \right\} - {{\text{q}}_{\text{i}}}}}} \right)} {20.0}}} \right.\kern-\nulldelimiterspace} {20.0}}}}} \right.\kern-\nulldelimiterspace} {{\text{dt}} = {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} {{{\text{S}}_{{\text{q,i}}}}}}} \right.\kern-\nulldelimiterspace} {{{\text{S}}_{{\text{q,i}}}}}}} \right]} \right\} - {{\text{q}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} {{{\text{S}}_{{\text{q,i}}}}}}} \right.\kern-\nulldelimiterspace} {{{\text{S}}_{{\text{q,i}}}}}}} \right]} \right\} - {{\text{q}}_{\text{i}}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} {{{\text{S}}_{{\text{q,i}}}}}}} \right.\kern-\nulldelimiterspace} {{{\text{S}}_{{\text{q,i}}}}}}} \right]} \right\} - {{\text{q}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ {{{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + {{\text{V}}_{{\text{half,q,i}}}}} \right)} {{{\text{S}}_{{\text{q,i}}}}}}} \right.\kern-\nulldelimiterspace} {{{\text{S}}_{{\text{q,i}}}}}}} \right]} \right\} - {{\text{q}}_{\text{i}}}}}} \right)} {20.0}}} \right.\kern-\nulldelimiterspace} {20.0}}}}} \hfill \\ {{{{\text{d}}{{\text{p}}_{\text{i}}}} \mathord{\left/{\vphantom {{{\text{d}}{{\text{p}}_{\text{i}}}} {{\text{dt}} = {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} {24.0}}} \right.\kern-\nulldelimiterspace} {24.0}}} \right]} \right\} - {{\text{p}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} {24.0}}} \right.\kern-\nulldelimiterspace} {24.0}}} \right]} \right\} - {{\text{p}}_{\text{i}}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} {24.0}}} \right.\kern-\nulldelimiterspace} {24.0}}} \right]} \right\} - {{\text{p}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} {24.0}}} \right.\kern-\nulldelimiterspace} {24.0}}} \right]} \right\} - {{\text{p}}_{\text{i}}}}}} \right)} {{\tau _{\text{p}}}}}} \right.\kern-\nulldelimiterspace} {{\tau _{\text{p}}}}}}}} \right.\kern-\nulldelimiterspace} {{\text{dt}} = {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} {24.0}}} \right.\kern-\nulldelimiterspace} {24.0}}} \right]} \right\} - {{\text{p}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} {24.0}}} \right.\kern-\nulldelimiterspace} {24.0}}} \right]} \right\} - {{\text{p}}_{\text{i}}}}}} \right)} \mathord{\left/{\vphantom {{\left( {{1 \mathord{\left/{\vphantom {1 {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} {24.0}}} \right.\kern-\nulldelimiterspace} {24.0}}} \right]} \right\} - {{\text{p}}_{\text{i}}}}}} \right.\kern-\nulldelimiterspace} {\left\{ {1 + \exp \left[ { - {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} \mathord{\left/{\vphantom {{\left( {{{\text{V}}_{\text{i}}} + 43.0} \right)} {24.0}}} \right.\kern-\nulldelimiterspace} {24.0}}} \right]} \right\} - {{\text{p}}_{\text{i}}}}}} \right)} {{\tau _{\text{p}}}}}} \right.\kern-\nulldelimiterspace} {{\tau _{\text{p}}}}}}}} \hfill \\ {{\tau _{\text{p}}} = 2.0\,\exp \left[ { - {{{{\left( {{{\text{V}}_i} + 50.0} \right)}^2}} \mathord{\left/{\vphantom {{{{\left( {{{\text{V}}_i} + 50.0} \right)}^2}} {550.0}}} \right.\kern-\nulldelimiterspace} {550.0}}} \right] + 1.1} \hfill \\ \end{array} $$

SK potassium current:

$$ {{\text{I}}_{{\text{SK,i}}}} = {{{{\text{g}}_{{\text{SK}}}}} \mathord{\left/{\vphantom {{{{\text{g}}_{{\text{SK}}}}} {\left[ {1 + {{\left( {{{{{\text{K}}_{{\text{m,SK}}}}} \mathord{\left/{\vphantom {{{{\text{K}}_{{\text{m,SK}}}}} {{{\left[ {{\text{C}}{{\text{a}}^{2 + }}} \right]}_{{\text{in,i}}}}}}} \right.\kern-\nulldelimiterspace} {{{\left[ {{\text{C}}{{\text{a}}^{2 + }}} \right]}_{{\text{in,i}}}}}}} \right)}^4}} \right]\left( {{{\text{V}}_{\text{i}}} - {{\text{E}}_{\text{K}}}} \right)}}} \right.\kern-\nulldelimiterspace} {\left[ {1 + {{\left( {{{{{\text{K}}_{{\text{m,SK}}}}} \mathord{\left/{\vphantom {{{{\text{K}}_{{\text{m,SK}}}}} {{{\left[ {{\text{C}}{{\text{a}}^{2 + }}} \right]}_{{\text{in,i}}}}}}} \right.\kern-\nulldelimiterspace} {{{\left[ {{\text{C}}{{\text{a}}^{2 + }}} \right]}_{{\text{in,i}}}}}}} \right)}^4}} \right]\left( {{{\text{V}}_{\text{i}}} - {{\text{E}}_{\text{K}}}} \right)}} $$

Intercompartmental coupling currents:

$$ \begin{array}{*{20}{c}} {{{\text{I}}_{{\text{dp}}}} = {{\text{g}}_{{\text{dp}}}}\left( {{{\text{V}}_{\text{d}}} - {{\text{V}}_{\text{p}}}} \right);\,{{\text{I}}_{{\text{pd}}}} = {{\text{g}}_{{\text{pd}}}}\left( {{{\text{V}}_{\text{p}}} - {{\text{V}}_{\text{d}}}} \right);\,{{\text{I}}_{{\text{ps}}}} = {{\text{g}}_{{\text{ps}}}}\left( {{{\text{V}}_{\text{p}}} - {{\text{V}}_s}} \right);{{\text{I}}_{{\text{sp}}}} = {{\text{g}}_{{\text{sp}}}}\left( {{{\text{V}}_s} - {{\text{V}}_{\text{p}}}} \right);} \hfill \\ {{{\text{g}}_{{\text{sp}}}} = {{4 \times {{10}^8}{{\text{G}}_{{\text{sp}}}}} \mathord{\left/{\vphantom {{4 \times {{10}^8}{{\text{G}}_{{\text{sp}}}}} {\left( {\pi {{\text{d}}_{\text{p}}}{{\text{L}}_{\text{p}}}} \right);{{\text{g}}_{{\text{ps}}}} = {{{{10}^8}{{\text{G}}_{{\text{sp}}}}} \mathord{\left/{\vphantom {{{{10}^8}{{\text{G}}_{{\text{sp}}}}} {\left( {\pi {{\text{d}}_{\text{p}}}{{\text{L}}_{\text{p}}}} \right);}}} \right.\kern-\nulldelimiterspace} {\left( {\pi {{\text{d}}_{\text{p}}}{{\text{L}}_{\text{p}}}} \right);}}}}} \right.\kern-\nulldelimiterspace} {\left( {\pi {{\text{d}}_{\text{p}}}{{\text{L}}_{\text{p}}}} \right);{{\text{g}}_{{\text{ps}}}} = {{{{10}^8}{{\text{G}}_{{\text{sp}}}}} \mathord{\left/{\vphantom {{{{10}^8}{{\text{G}}_{{\text{sp}}}}} {\left( {\pi {{\text{d}}_{\text{p}}}{{\text{L}}_{\text{p}}}} \right);}}} \right.\kern-\nulldelimiterspace} {\left( {\pi {{\text{d}}_{\text{p}}}{{\text{L}}_{\text{p}}}} \right);}}}}} \hfill \\ {{{\text{g}}_{{\text{pd}}}} = {{2 \times {{10}^8}{{\text{G}}_{{\text{pd}}}}} \mathord{\left/{\vphantom {{2 \times {{10}^8}{{\text{G}}_{{\text{pd}}}}} {\left( {\pi {{\text{d}}_{\text{p}}}{{\text{L}}_{\text{p}}}} \right);{{\text{g}}_{{\text{dp}}}} = {{{{10}^8}{{\text{G}}_{{\text{pd}}}}} \mathord{\left/{\vphantom {{{{10}^8}{{\text{G}}_{{\text{pd}}}}} {\left( {\pi {{\text{d}}_{\text{d}}}{{\text{L}}_{\text{d}}}} \right);}}} \right.\kern-\nulldelimiterspace} {\left( {\pi {{\text{d}}_{\text{d}}}{{\text{L}}_{\text{d}}}} \right);}}}}} \right.\kern-\nulldelimiterspace} {\left( {\pi {{\text{d}}_{\text{p}}}{{\text{L}}_{\text{p}}}} \right);{{\text{g}}_{{\text{dp}}}} = {{{{10}^8}{{\text{G}}_{{\text{pd}}}}} \mathord{\left/{\vphantom {{{{10}^8}{{\text{G}}_{{\text{pd}}}}} {\left( {\pi {{\text{d}}_{\text{d}}}{{\text{L}}_{\text{d}}}} \right);}}} \right.\kern-\nulldelimiterspace} {\left( {\pi {{\text{d}}_{\text{d}}}{{\text{L}}_{\text{d}}}} \right);}}}}} \hfill \\ {{{\text{G}}_{{\text{sp}}}} = {{{{10}^2}\pi {\text{d}}_{\text{p}}^{\text{2}}{\text{d}}_{\text{s}}^{\text{2}}} \mathord{\left/{\vphantom {{{{10}^2}\pi {\text{d}}_{\text{p}}^{\text{2}}{\text{d}}_{\text{s}}^{\text{2}}} {\left[ {2{{\text{R}}_{\text{a}}}\left( {{{\text{L}}_{\text{p}}}{\text{d}}_{\text{s}}^{\text{2}} + {{\text{L}}_{\text{s}}}{\text{d}}_{\text{p}}^{\text{2}}} \right)} \right]}}} \right.\kern-\nulldelimiterspace} {\left[ {2{{\text{R}}_{\text{a}}}\left( {{{\text{L}}_{\text{p}}}{\text{d}}_{\text{s}}^{\text{2}} + {{\text{L}}_{\text{s}}}{\text{d}}_{\text{p}}^{\text{2}}} \right)} \right]}}} \hfill \\ {{{\text{G}}_{{\text{pd}}}} = {{{{10}^2}\pi {\text{d}}_{\text{p}}^{\text{2}}{\text{d}}_{\text{d}}^{\text{2}}} \mathord{\left/{\vphantom {{{{10}^2}\pi {\text{d}}_{\text{p}}^{\text{2}}{\text{d}}_{\text{d}}^{\text{2}}} {\left[ {2{{\text{R}}_{\text{a}}}\left( {{{\text{L}}_{\text{p}}}{\text{d}}_{\text{d}}^2 + {{\text{L}}_{\text{d}}}{\text{d}}_{\text{p}}^2} \right)} \right]}}} \right.\kern-\nulldelimiterspace} {\left[ {2{{\text{R}}_{\text{a}}}\left( {{{\text{L}}_{\text{p}}}{\text{d}}_{\text{d}}^2 + {{\text{L}}_{\text{d}}}{\text{d}}_{\text{p}}^2} \right)} \right]}}} \hfill \\ \end{array} $$

Parameters

The same parameters were used for the models with schematic morphology and reconstructed morphology. The only difference was in the morphology.

$$ \begin{array}{*{20}{c}} {{{\text{C}}_{\text{m}}} = {{1\mu {\text{F}}} \mathord{\left/{\vphantom {{1\mu {\text{F}}} {{\text{c}}{{\text{m}}^2};{{\text{R}}_{\text{a}}} = 40\,\Omega \,{\text{cm}};{\text{R}} = {{8,314\,{\text{J}}} \mathord{\left/{\vphantom {{8,314\,{\text{J}}} {{\text{kg}}}}} \right.\kern-\nulldelimiterspace} {{\text{kg}}}}\,{\text{mol}}\,{\text{K}};{\text{F}} = {{96520\,{\text{C}}} \mathord{\left/{\vphantom {{96520\,{\text{C}}} {{\text{mol}};\,{\text{T}} = 308.15\,{\text{K}};}}} \right.\kern-\nulldelimiterspace} {{\text{mol}};\,{\text{T}} = 308.15\,{\text{K}};}}}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};{{\text{R}}_{\text{a}}} = 40\,\Omega \,{\text{cm}};{\text{R}} = {{8,314\,{\text{J}}} \mathord{\left/{\vphantom {{8,314\,{\text{J}}} {{\text{kg}}}}} \right.\kern-\nulldelimiterspace} {{\text{kg}}}}\,{\text{mol}}\,{\text{K}};{\text{F}} = {{96520\,{\text{C}}} \mathord{\left/{\vphantom {{96520\,{\text{C}}} {{\text{mol}};\,{\text{T}} = 308.15\,{\text{K}};}}} \right.\kern-\nulldelimiterspace} {{\text{mol}};\,{\text{T}} = 308.15\,{\text{K}};}}}}} \hfill \\ {{{\text{d}}_{\text{d}}} = 1.5\mu {\text{m}};\,{d_p} = 3\mu {\text{m}};{{\text{d}}_{\text{s}}} = 15\mu {\text{m}};{{\text{L}}_{\text{p}}} = 150\mu {\text{m}};{{\text{L}}_{\text{s}}} = 25\mu {\text{m}};} \hfill \\ {{{\text{E}}_{\text{k}}} = - 90\,{\text{mV}};{{\text{E}}_{{\text{Ca}}}} = 120{\text{mV}};{{\text{V}}_{{\text{half,m,i}}}} = - 34.6\,{\text{mV}};{{\text{V}}_{{\text{half,h,i}}}} = - 56.8\,{\text{mV}};} \hfill \\ {{\tau _{{{\text{K}}_{\text{v}}}}} = 19.0\,{\text{ms}};{\tau _{{\text{Ca}}}} = 18.0\,{\text{ms}};} \hfill \\ {{{\left[ {{\text{Na}}} \right]}_{{\text{out}}}} = 145\,{\text{mM}};{{\text{K}}_{{\text{M,SK}}}} = 0.00019\,{\text{mM}};{{\text{K}}_{{\text{M,CaP}}}} = 0.0005\,{\text{M}} = {\text{mM}};{{\text{K}}_{{\text{M,Na}}}} = 10\,{\text{mM}};} \hfill \\ {{f_i} = 2;\,{{\text{F}}_{{\text{Ca}}}} = 0.05;} \hfill \\ {{{\text{I}}_{{\text{CaP,max,i}}}} = {{0.00191\,{\text{mA}}} \mathord{\left/{\vphantom {{0.00191\,{\text{mA}}} {{\text{c}}{{\text{m}}^2};{{\text{I}}_{{\text{NaP,max,i}}}} = {{0.0092\,{\text{mA}}} \mathord{\left/{\vphantom {{0.0092\,{\text{mA}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};{{\text{I}}_{{\text{NaP,max,i}}}} = {{0.0092\,{\text{mA}}} \mathord{\left/{\vphantom {{0.0092\,{\text{mA}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}} \hfill \\ {{{\text{g}}_{{\text{L,Na,i}}}} = {{2.375\,\mu {\text{S}}} \mathord{\left/{\vphantom {{2.375\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{L,Ca,i}}}} = {{0.0136\,\mu {\text{S}}} \mathord{\left/{\vphantom {{0.0136\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{L,K,i}}}} = {{5.5\,\mu {\text{S}}} \mathord{\left/{\vphantom {{5.5\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{L,K,i}}}} = {{5.5\,\mu {\text{S}}} \mathord{\left/{\vphantom {{5.5\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{L,Ca,i}}}} = {{0.0136\,\mu {\text{S}}} \mathord{\left/{\vphantom {{0.0136\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{L,K,i}}}} = {{5.5\,\mu {\text{S}}} \mathord{\left/{\vphantom {{5.5\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{L,K,i}}}} = {{5.5\,\mu {\text{S}}} \mathord{\left/{\vphantom {{5.5\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}}}} \hfill \\ {{{\text{g}}_{{\text{Na,i}}}} = {{550\,\mu {\text{S}}} \mathord{\left/{\vphantom {{550\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{KV,i}}}} = {{665\,\mu {\text{S}}} \mathord{\left/{\vphantom {{665\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{KV,i}}}} = {{665\,\mu {\text{S}}} \mathord{\left/{\vphantom {{665\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}} \hfill \\ {{{\text{g}}_{{\text{Ca,L,i}}}} = {{11.196\,\mu {\text{S}}} \mathord{\left/{\vphantom {{11.196\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{SK,i}}}} = {{59\,\mu {\text{S}}} \mathord{\left/{\vphantom {{59\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{SK,i}}}} = {{59\,\mu {\text{S}}} \mathord{\left/{\vphantom {{59\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}} \hfill \\ {{{\text{g}}_{{\text{KA,d}}}} = {{266\,\mu {\text{S}}} \mathord{\left/{\vphantom {{266\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{KA,p}}}} = {{285\,\mu {\text{S}}} \mathord{\left/{\vphantom {{285\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{KA,s}}}} = 570\,{{\mu {\text{S}}} \mathord{\left/{\vphantom {{\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{KA,s}}}} = 570\,{{\mu {\text{S}}} \mathord{\left/{\vphantom {{\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{KA,p}}}} = {{285\,\mu {\text{S}}} \mathord{\left/{\vphantom {{285\,\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{KA,s}}}} = 570\,{{\mu {\text{S}}} \mathord{\left/{\vphantom {{\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};{{\text{g}}_{{\text{KA,s}}}} = 570\,{{\mu {\text{S}}} \mathord{\left/{\vphantom {{\mu {\text{S}}} {{\text{c}}{{\text{m}}^2};}}} \right.\kern-\nulldelimiterspace} {{\text{c}}{{\text{m}}^2};}}}}}}} \hfill \\ \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, A.Y., Huertas, M.A., Kuznetsov, A.S. et al. Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. J Comput Neurosci 28, 389–403 (2010). https://doi.org/10.1007/s10827-010-0222-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0222-y

Keywords

Navigation