Skip to main content

Modeling Pacemaking, Bursting, and Depolarization Block in Midbrain Dopamine Neurons

  • Protocol
  • First Online:
Dopaminergic System Function and Dysfunction: Experimental Approaches

Part of the book series: Neuromethods ((NM,volume 193))

  • 483 Accesses

Abstract

Here we present methodology to simulate the electrical activity of dopamine neurons by using a freely available software package to numerically integrate a set of coupled nonlinear equations that describe the equivalent circuit that generates the membrane potential, the nonlinear dynamics of channel gating, and a material balance on Ca2+ ions. The general methodology is conductance-based single-neuron computational models. We begin with Hodgkin-Huxley (H-H)-type conductance-based single-compartment models of pacemaking in vitro, which is described mathematically as a limit cycle. We illustrate phase plane methods to gain insight into this activity. Next, we address modeling rhythmic bursting activity. To illustrate that the methodology can be extended beyond the H-H formalism in which activation and inactivation gates operate independently of each other, we include a Markov model of a K+ channel in which they are dependent on each other. We then add random synaptic input to the model to illustrate the hypothesized balanced state in dopamine neurons, which is quite distinct from the balanced state of neocortical pyramidal neurons. We use this model to explain transient bursts and pauses. A major advantage of models is that parameter sweeps can be conducted quickly to determine the robustness of predicted activity. Finally, we move to a multi-compartmental model that captures the full morphology of a dopamine neuron to illustrate the role of the axon initial segment (AIS) in action potential initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Athalye VR, Carmena JM, Costa RM (2020) Neural reinforcement: re-entering and refining neural dynamics leading to desirable outcomes. Curr Opin Neurobiol 60:145–154

    Article  CAS  Google Scholar 

  2. Gershman SJ, Uchida N (2019) Believing in dopamine. Nat Rev Neurosci 20:703–714

    Article  CAS  Google Scholar 

  3. Langdon AJ, Sharpe MJ, Schoenbaum G et al (2018) Model-based predictions for dopamine. Curr Opin Neurobiol 49:1–7

    Article  CAS  Google Scholar 

  4. Schultz W (2015) Neuronal reward and decision signals: from theories to data. Physiol Rev 95:853–951

    Article  CAS  Google Scholar 

  5. Obeso JA, Stamelou M, Goetz CG et al (2017) Past, present, and future of Parkinson’s disease: a special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord 32:1264–1310

    Article  CAS  Google Scholar 

  6. McCutcheon RA, Abi-Dargham A, Howes OD (2019) Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci 42:205–220

    Article  CAS  Google Scholar 

  7. Lüscher C (2016) The emergence of a circuit model for addiction. Annu Rev Neurosci 39:257–276

    Article  Google Scholar 

  8. Kang Y, Kitai ST (1993) A whole cell patch-clamp study on the pacemaker potential in dopaminergic neurons of rat substantia nigra compacta. Neurosci Res 18:209–221

    Article  CAS  Google Scholar 

  9. Yung WH, Häusser MA, Jack JJ (1991) Electrophysiology of dopaminergic and non-dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro. J Physiol 436:643–667

    Google Scholar 

  10. Nedergaard S, Flatman JA, Engberg I (1993) Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol 466:727–747

    Google Scholar 

  11. Ping HX, Shepard PD (1996) Apamin-sensitive Ca2+-activated K+ channels regulate pacemaker activity in nigral dopamine neurons. Neuroreport 7:809–814

    Google Scholar 

  12. Kang Y, Kitai ST (1993) Calcium spike underlying rhythmic firing in dopaminergic neurons of the rat substantia nigra. Neurosci Res 18:195–207

    Article  CAS  Google Scholar 

  13. Grace A, Onn S (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 9:3463–3481

    Article  CAS  Google Scholar 

  14. Chan CS, Guzman J, Ilijic E et al (2007) “Rejuvenation” protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    Article  CAS  Google Scholar 

  15. Wilson CJ, Callaway JC (2000) Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83:3084–3100

    Article  CAS  Google Scholar 

  16. Richards CD, Shiroyama T, Kitai ST (1997) Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience 80:545–557

    Article  CAS  Google Scholar 

  17. Tucker KR, Huertas MA, Horn JP et al (2012) Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act. J Neurosci 32:14519–14531

    Article  CAS  Google Scholar 

  18. Lammel S, Hetzel A, Häckel O et al (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773

    Article  CAS  Google Scholar 

  19. Johnson SW, Seutin V, North RA (1992) Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science 258:665–667

    Article  CAS  Google Scholar 

  20. Canavier CC, Oprisan SA, Callaway JC et al (2007) Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. J Neurophysiol 98:3006–3022

    Article  Google Scholar 

  21. Johnson SW, Wu Y-N (2004) Multiple mechanisms underlie burst firing in rat midbrain dopamine neurons in vitro. Brain Res 1019:293–296

    Google Scholar 

  22. Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36:1983–1994

    Article  CAS  Google Scholar 

  23. Schiemann J, Schlaudraff F, Klose V et al (2012) K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat Neurosci 15:1272–1280

    Article  CAS  Google Scholar 

  24. Otomo K, Perkins J, Kulkarni A et al (2020) In vivo patch-clamp recordings reveal distinct subthreshold signatures and threshold dynamics of midbrain dopamine neurons. Nat Commun 11:6286

    Google Scholar 

  25. Canavier CC, Evans RC, Oster AM et al (2016) Implications of cellular models of dopamine neurons for disease. J Neurophysiol 116:2815–2830

    Article  CAS  Google Scholar 

  26. Canavier CC, Landry RS (2006) An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. J Neurophysiol 96:2549–2563

    Article  CAS  Google Scholar 

  27. Komendantov AO, Komendantova OG, Johnson SW et al (2004) A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. J Neurophysiol 91:346–357

    Article  CAS  Google Scholar 

  28. Lobb CJ, Wilson CJ, Paladini CA (2010) A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol 104:403–413

    Article  CAS  Google Scholar 

  29. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol Lond 117:500–544

    Article  CAS  Google Scholar 

  30. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209

    Article  CAS  Google Scholar 

  31. Hines ML, Davison AP, Muller E (2009) NEURON and python. Front Neuroinform 3:1

    Article  Google Scholar 

  32. Carnevale NT, Hines ML (2006) The neuron book. Cambridge University Press

    Google Scholar 

  33. Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123–135

    Google Scholar 

  34. Kuznetsova A, Huertas M, Kuznetsov A et al (2010) Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. J Comput Neurosci 28:389–403

    Article  Google Scholar 

  35. Foehring RC, Zhang XF, Lee JCF et al (2009) Endogenous calcium buffering capacity of substantia nigral dopamine neurons. J Neurophysiol 102:2326–2333

    Article  CAS  Google Scholar 

  36. Roeper J (2013) Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci 36:336–342

    Article  CAS  Google Scholar 

  37. Amini B, Clark JW Jr, Canavier CC (1999) Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. J Neurophysiol 82:2249–2261

    Article  CAS  Google Scholar 

  38. Bertram R, Butte MJ, Kiemel T et al (1995) Topological and phenomenological classification of bursting oscillations. Bull Math Biol 57:413–439

    Article  CAS  Google Scholar 

  39. Rinzel J (1987) A formal classification of bursting mechanisms in excitable systems. In: Mathematical topics in population biology, morphogenesis and neurosciences. Springer, Berlin, pp 267–281

    Chapter  Google Scholar 

  40. Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press

    Google Scholar 

  41. Bertram R, Rubin JE (2017) Multi-timescale systems and fast-slow analysis. Math Biosci 287:105–121

    Article  Google Scholar 

  42. Drion G, Massotte L, Sepulchre R et al (2011) How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons. PLoS Comput Biol 7:e1002050

    Article  CAS  Google Scholar 

  43. Ji H, Tucker KR, Putzier I et al (2012) Functional characterization of ether-a-go-go-related gene potassium channels in midbrain dopamine neurons: implications for a role in depolarization block. Eur J Neurosci 36:2906–2916

    Article  Google Scholar 

  44. Lovejoy LP, Shepard PD, Canavier CC (2001) Apamin-induced irregular firing in vitro and irregular single-spike firing observed in vivo in dopamine neurons is chaotic. Neuroscience 104:829–840

    Article  CAS  Google Scholar 

  45. de Vrind V, Scuvée-Moreau J, Drion G et al (2016) Interactions between calcium channels and SK channels in midbrain dopamine neurons and their impact on pacemaker regularity: contrasting roles of N- and L-type channels. Eur J Pharmacol 788:274–279

    Article  Google Scholar 

  46. Shepard PD, Bunney BS (1991) Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca2+-activated K+ conductance. Exp Brain Res 86:141–150

    Google Scholar 

  47. Waroux O, Massotte L, Alleva L et al (2005) SK channels control the firing pattern of midbrain dopaminergic neurons in vivo. Eur J Neurosci 22:3111–3121

    Article  Google Scholar 

  48. Oster A, Faure P, Gutkin BS (2015) Mechanisms for multiple activity modes of VTA dopamine neurons. Front Comput Neurosci 9:95

    Article  Google Scholar 

  49. Canavier CC (1999) Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. J Comput Neurosci 6:49–69

    Article  CAS  Google Scholar 

  50. Knowlton CJ, Kutterer S, Roeper J et al (2018) Calcium dynamics control K-ATP channel mediated bursting in substantia nigra dopamine neurons: a combined experimental and modeling study. J Neurophysiol 119(1):84–95

    Article  CAS  Google Scholar 

  51. Drion G, Bonjean M, Waroux O et al (2010) M-type channels selectively control bursting in rat dopaminergic neurons. Eur J Neurosci 31:827–835

    Article  Google Scholar 

  52. Yu N, Canavier CC (2015) A mathematical model of a midbrain dopamine neuron identifies two slow variables likely responsible for bursts evoked by SK channel antagonists and terminated by depolarization block. J Math Neurosci 5:5

    Article  Google Scholar 

  53. Qian K, Yu N, Tucker KR et al (2014) Mathematical analysis of depolarization block mediated by slow inactivation of fast sodium channels in midbrain dopamine neurons. J Neurophysiol 112(11):2779–2790

    Article  CAS  Google Scholar 

  54. Grace AA, Bunney BS (1986) Induction of depolarization block in midbrain dopamine neurons by repeated administration of haloperidol: analysis using in vivo intracellular recording. J Pharmacol Exp Ther 238:1092–1100

    Google Scholar 

  55. Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr Opin Neurobiol 4:569–579

    Article  CAS  Google Scholar 

  56. van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724–1726

    Article  Google Scholar 

  57. Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8:183–208

    Article  CAS  Google Scholar 

  58. Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8:451–465

    Article  CAS  Google Scholar 

  59. Hausser M, Stuart G, Racca C et al (1995) Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron 15:637–647

    Article  CAS  Google Scholar 

  60. Meza RC, López-Jury L, Canavier CC et al (2018) Role of the axon initial segment in the control of spontaneous frequency of nigral dopaminergic neurons in vivo. J Neurosci 38:733–744

    Article  CAS  Google Scholar 

  61. López-Jury L, Meza RC, Brown MTC et al (2018) Morphological and biophysical determinants of the intracellular and extracellular waveforms in nigral dopaminergic neurons: a computational study. J Neurosci 38:8295–8310

    Article  Google Scholar 

  62. Grace AA (1990) Evidence for the functional compartmentalization of spike generating regions of rat midbrain dopamine neurons recorded in vitro. Brain Res 524:31–41

    Article  CAS  Google Scholar 

  63. Yu Y, Shu Y, McCormick DA (2008) Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J Neurosci 28:7260–7272

    Article  CAS  Google Scholar 

  64. McCormick DA, Shu Y, Yu Y (2007) Neurophysiology: Hodgkin and Huxley model--still standing? Nature 445:E1–E2; discussion E2–3

    Article  CAS  Google Scholar 

  65. Knowlton CJ, Ziouziou TI, Hammer N et al (2021) Inactivation mode of sodium channels defines the different maximal firing rates of conventional versus atypical midbrain dopamine neurons. PLoS Comput Biol 17:e1009371

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen C. Canavier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Knowlton, C., Canavier, C.C. (2023). Modeling Pacemaking, Bursting, and Depolarization Block in Midbrain Dopamine Neurons. In: Fuentealba-Evans, J.A., Henny, P. (eds) Dopaminergic System Function and Dysfunction: Experimental Approaches. Neuromethods, vol 193. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2799-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2799-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2798-3

  • Online ISBN: 978-1-0716-2799-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics