Skip to main content
Log in

Dynamics of tyrosine hydroxylase mediated regulation of dopamine synthesis

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Tyrosine hydroxylase's catalysis of tyrosine to dihydroxyphenylalanine (DOPA) is the highly regulated, rate-limiting step catalyzing the synthesis of the catecholamine neurotransmitter dopamine. Phosphorylation, cofactor-mediated regulation, and the cell's redox status, have been shown to regulate the enzyme's activity. This paper incorporates these regulatory mechanisms into an integrated dynamic model that is capable of demonstrating relative rates of dopamine synthesis under various physiological conditions. Most of the kinetic equations and substrate parameters used in the model correspond with published experimental data, while a few which were not available in literature have been optimized based on explicit assumptions. This kinetic pathway model permits a comparison of the relative regulatory contributions made by variations in substrate, phosphorylation, and redox status on enzymatic activity and permits predictions of potential disease states. For example, the model correctly predicts the recent observation that individuals with haemochromatosis and having excessive iron accumulation are at increased risk for acquiring Parkinsonism, a defect in neuronal dopamine synthesis (Bartzokis et al., 2004; Costello et al., 2004). Alpha synuclein mediated regulation of tyrosine hydroxylase has also been incorporated in the model, allowing an insight into the over-expression and aggregation of alpha synuclein in Parkinson's disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albert KA, Helmer-Matyjek E, et al (1984) Calcium/phospholipid-dependent protein kinase (protein kinase C) phosphorylates and activates tyrosine hydroxylase. Proc. Natl. Acad. Sci. USA 81(24): 7713–7717.

    Article  PubMed  CAS  Google Scholar 

  • Allen RM (1977) Dopamine hypersensitivity and tardive dyskinesia. Am. J. Psychiatry 134(10): 1154–1155.

    PubMed  CAS  Google Scholar 

  • Allgood VE, Powell-Oliver FE, et al (1990) Vitamin B6 influences glucocorticoid receptor-dependent gene expression. J. Biol. Chem. 265(21): 12424–12433.

    PubMed  CAS  Google Scholar 

  • Almas B, Le Bourdelles B, et al (1992) Regulation of recombinant human tyrosine hydroxylase isozymes by catecholamine binding and phosphorylation. Structure/activity studies and mechanistic implications. Eur. J. Biochem. 209(1): 249–255.

    Article  PubMed  CAS  Google Scholar 

  • Andersson KK, Cox DD, et al (1988) Resonance Raman studies on the blue-green-colored bovine adrenal tyrosine 3-monooxygenase (tyrosine hydroxylase). Evidence that the feedback inhibitors adrenaline and noradrenaline are coordinated to iron. J. Biol. Chem. 263(35): 18621–18626.

    PubMed  CAS  Google Scholar 

  • Andersson KK, Vassort C, et al (1992). Purification and characterization of the blue-green rat phaeochromocytoma (PC12) tyrosine hydroxylase with a dopamine-Fe(III) complex. Reversal of the endogenous feedback inhibition by phosphorylation of serine-40. Biochem. J. 284(Pt 3): 687–695.

    PubMed  CAS  Google Scholar 

  • Barbeau A (1968) Dopamine and dopamine metabolites in Parkinson's disease—a review. Proc. Aust. Assoc. Neurol. 5(1): 95–100.

    PubMed  CAS  Google Scholar 

  • Bartzokis G, Tishler TA, et al (2004) Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. Ann. N.Y. Acad. Sci. 1012: 224–236.

    Article  PubMed  CAS  Google Scholar 

  • Benavides-Piccione R, DeFelipe J (2003) Different populations of tyrosine-hydroxylase-immunoreactive neurons defined by differential expression of nitric oxide synthase in the human temporal cortex. Cereb. Cortex. 13(3): 297–307.

    Article  PubMed  Google Scholar 

  • Berresheim U, Kuhn DM (1994) Dephosphorylation of tyrosine hydroxylase by brain protein phosphatases: a predominant role for type 2A. Brain. Res. 637(1–2): 273–276.

    Article  PubMed  CAS  Google Scholar 

  • Bertoldi M, Borri Voltattorni C (2000) Reaction of dopa decarboxylase with L-aromatic amino acids under aerobic and anaerobic conditions. Biochem. J. 352(Pt 2): 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Bevilaqua LR, Graham ME, et al (2001) Phosphorylation of Ser(19) alters the conformation of tyrosine hydroxylase to increase the rate of phosphorylation of Ser(40). J. Biol. Chem. 276(44): 40411–40416.

    Article  PubMed  CAS  Google Scholar 

  • Black BC, Smarrelli J Jr (1986) A kinetic analysis of Drosophila melanogaster dopa decarboxylase. Biochim. Biophys. Acta 870(1): 31–40.

    PubMed  CAS  Google Scholar 

  • Charvin D, Vanhoutte P, et al (2005) Unraveling a role for dopamine in Huntington's disease: the dual role of reactive oxygen species and D2 receptor stimulation. Proc. Natl. Acad. Sci. USA 102(34): 12218–12223.

    Article  PubMed  CAS  Google Scholar 

  • Cho S, Neff NH, et al (1997). Regulation of tyrosine hydroxylase and aromatic L-amino acid decarboxylase by dopaminergic drugs. Eur. J. Pharmacol. 323(2–3): 149–157.

    Article  PubMed  CAS  Google Scholar 

  • Clardy SL, Earley CJ, et al (2006). Ferritin subunits in CSF are decreased in restless legs syndrome. J. Lab. Clin. Med. 147(2): 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Costello DJ, Walsh SL, et al (2004) Concurrent hereditary haemochromatosis and idiopathic Parkinson's disease: a case report series. J. Neurol. Neurosurg. Psychiatry 75(4): 631–633.

    Article  PubMed  CAS  Google Scholar 

  • Daubner SC, Fitzpatrick PF (1993) Alleviation of catecholamine inhibition of tyrosine hydroxylase by phosphorylation at serine40. Adv. Exp. Med. Biol. 338: 87–92.

    PubMed  CAS  Google Scholar 

  • Dekker MC, Giesbergen PC, et al (2003) Mutations in the hemochromatosis gene (HFE), Parkinson's disease and parkinsonism. Neurosci. Lett. 348(2): 117–119.

    Article  PubMed  CAS  Google Scholar 

  • Demarquay G, Setiey A, et al (2000) Clinical report of three patients with hereditary hemochromatosis and movement disorders. Mov. Disord. 15(6): 1204–1209.

    Article  PubMed  CAS  Google Scholar 

  • Dunkley PR, Bobrovskaya L, et al (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J. Neurochem. 91(5): 1025–1043.

    Article  PubMed  CAS  Google Scholar 

  • Faurbye A (1968) The role of amines in the etiology of schizophrenia. Compr. Psychiatry. 9(2): 155–177.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick PF (1989) The metal requirement of rat tyrosine hydroxylase. Biochem. Biophys. Res. Commun. 161(1): 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick PF (1991) Steady-state kinetic mechanism of rat tyrosine hydroxylase. Biochemistry 30(15): 3658–3662.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick PF (1993) Mechanistic studies of tyrosine hydroxylase. Adv. Exp. Med. Biol. 338: 81–86.

    PubMed  CAS  Google Scholar 

  • Flatmark T, Almas B, et al (1999) Tyrosine hydroxylase binds tetrahydrobiopterin cofactor with negative cooperativity, as shown by kinetic analyses and surface plasmon resonance detection. Eur. J. Biochem. 262(3): 840–849.

    Article  PubMed  CAS  Google Scholar 

  • Frantom PA, Seravalli J, et al (2006) Reduction and oxidation of the active site iron in tyrosine hydroxylase: kinetics and specificity. Biochemistry 45(7): 2372–2379.

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa H, Okuno S (1989) Regulation of the activity of tyrosine hydroxylase in the central nervous system. Adv. Enzyme Regul. 28: 93–110.

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa H, Okuno S (2005) Regulatory mechanism of tyrosine hydroxylase activity. Biochem. Biophys. Res. Commun. 338(1): 271–276

    Google Scholar 

  • Fuller RW, Steinberg M (1976) Regulation of enzymes that synthesize neurotransmitter monoamines. Adv. Enzyme. Regul. 14: 347–390.

    Article  PubMed  CAS  Google Scholar 

  • Funakoshi H, Okuno S, et al (1991) Different effects on activity caused by phosphorylation of tyrosine hydroxylase at serine 40 by three multifunctional protein kinases. J. Biol. Chem. 266(24): 15614–15620.

    PubMed  CAS  Google Scholar 

  • Gerlach J, Reisby N, et al (1974) Dopaminergic hypersensitivity and cholinergic hypofunction in the pathophysiology of tardive dyskinesia. Psychopharmacologia 34(1): 21–35.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein M (1984) Regulatory mechanisms of dopamine biosynthesis at the tyrosine hydroxylase step. Ann. N.Y. Acad. Sci. 430: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Golub MS, Germann SL, et al (2005) Movement disorders in the Hfe knockout mouse. Nutr. Neurosci. 8(4): 239–244.

    Article  PubMed  CAS  Google Scholar 

  • Greer M, Williams CM (1963) Dopamine metabolism in Parkinson's disease. Neurology 13: 73–76.

    PubMed  CAS  Google Scholar 

  • Haavik J, Andersson KK, et al (1988) Soluble tyrosine hydroxylase (tyrosine 3-monooxygenase) from bovine adrenal medulla: large-scale purification and physicochemical properties. Biochim. Biophys. Acta 953(2): 142–156.

    PubMed  CAS  Google Scholar 

  • Haavik J, Schelling DL, et al (1989) Identification of protein phosphatase 2A as the major tyrosine hydroxylase phosphatase in adrenal medulla and corpus striatum: evidence from the effects of okadaic acid. FEBS Lett. 251(1–2): 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Haavik J, Toska K (1998) Tyrosine hydroxylase and Parkinson's disease. Mol. Neurobiol. 16(3): 285–309.

    PubMed  CAS  Google Scholar 

  • Hairer E, Wanner G (1999) Stiff differential equations solved by Radau methods. J. Comput. Appl. Math. 111(1–2): 93–111.

    Article  Google Scholar 

  • Harada T, Kagamiyama H, et al (1993) Feedback regulation mechanisms for the control of GTP cyclohydrolase I activity. Science 260(5113): 1507–1510.

    Article  CAS  Google Scholar 

  • Harris JE, Morgenroth VH, 3rd, et al (1974) Regulation of catecholamine synthesis in the rat brain in vitro by cyclic AMP. Nature 252(5479): 156–158.

    Article  CAS  Google Scholar 

  • Haycock JW, Ahn NG, et al (1992) ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc. Natl. Acad. Sci. USA 89(6): 2365–2369.

    Article  PubMed  CAS  Google Scholar 

  • He X, Lee KY, et al (1996) Relationship between Enzymatic Activity and Oligomerization State of Tyrosine Hydroxylase. J. Biomed. Sci. 3(5): 332–337.

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1975) Brain monoamines and parkinsonism. Natl. Inst. Drug Abuse Res. Monogr. Ser. (3): 13–21.

  • Ikeda M, Fahien LA, et al (1966) A kinetic study of bovine adrenal tyrosine hydroxylase. J. Biol. Chem. 241(19): 4452–4456.

    PubMed  CAS  Google Scholar 

  • Joh TH, Park DH, et al (1978) Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: mechanism of enzyme activation. Proc. Natl. Acad. Sci. USA 75(10): 4744–4748.

    Article  PubMed  CAS  Google Scholar 

  • Justice JB, Jr, Nicolaysen LC, et al (1988) Modeling the dopaminergic nerve terminal. J. Neurosci. Methods 22(3): 239–252.

    Article  PubMed  Google Scholar 

  • Kappock TJ, Caradonna JP (1996) Pterin-Dependent amino acid hydroxylases. Chem. Rev. 96(7): 2659–2756.

    Article  PubMed  CAS  Google Scholar 

  • Kish SJ, Kalasinsky KS, et al (2001) Striatal dopaminergic and serotonergic markers in human heroin users. Neuropsychopharmacology 24(5): 561–567.

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski RT, Mandell AJ (1972) Regulatory properties of soluble and particulate rat brain tyrosine hydroxylase. J. Biol. Chem. 247(10): 3114–3122.

    PubMed  CAS  Google Scholar 

  • Kung L, Force M, et al (1998) Immunocytochemical localization of tyrosine hydroxylase in the human striatum: a postmortem ultrastructural study. J. Comp. Neurol. 390(1): 52–62.

    Article  PubMed  CAS  Google Scholar 

  • Lazar MA, Lockfeld AJ, et al (1982) Tyrosine hydroxylase from bovine striatum: catalytic properties of the phosphorylated and nonphosphorylated forms of the purified enzyme. J. Neurochem. 39(2): 409–422.

    Article  PubMed  CAS  Google Scholar 

  • Lazar MA, Mefford IN, et al (1982) Tyrosine hydroxylase activation. Comparison of in vitro phosphorylation and in vivo administration of haloperidol. Biochem. Pharmacol. 31(16): 2599–2607.

    Article  PubMed  CAS  Google Scholar 

  • Le Bourdelles B, Horellou P, et al (1991) Phosphorylation of human recombinant tyrosine hydroxylase isoforms 1 and 2: an additional phosphorylated residue in isoform 2, generated through alternative splicing. J. Biol. Chem. 266(26): 17124–17130.

    PubMed  CAS  Google Scholar 

  • Leal RB, Sim AT, et al (2002) Tyrosine hydroxylase dephosphorylation by protein phosphatase 2A in bovine adrenal chromaffin cells. Neurochem. Res. 27(3): 207–213.

    Article  PubMed  CAS  Google Scholar 

  • Margolese HC, Chouinard G, et al (2005) Tardive dyskinesia in the era of typical and atypical antipsychotics. Part 1: pathophysiology and mechanisms of induction. Can. J. Psychiatry 50(9): 541–547.

    PubMed  Google Scholar 

  • Mineyeva MF, Kudrin VS, et al (1978) Brain tyrosine hydroxylase: kinetic properties and regulation of the activity. Ann. Ist. Super. Sanita 14(1): 83–88.

    PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, et al (1988) Homospecific activity (activity per enzyme protein) of tyrosine hydroxylase increases in parkinsonian brain. J. Neural Transm. 72(1): 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Monod J, Wyman J, et al (1965) On the Nature of Allosteric Transitions: a Plausible Model. J. Mol. Biol. 12: 88–118.

    PubMed  CAS  Google Scholar 

  • Morgenroth VH, 3rd, Hegstrand LR, et al (1975) Evidence for involvement of protein kinase in the activation by adenosine 3′:5′-monophosphate of brain tyrosine 3-monooxygenase. J. Biol. Chem. 250(5): 1946–1948.

    PubMed  CAS  Google Scholar 

  • Nishimura M, Uyeda K (1995) Purification and characterization of a novel xylulose 5-phosphate-activated protein phosphatase catalyzing dephosphorylation of fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. J. Biol. Chem. 270(44): 26341–26346.

    Article  PubMed  CAS  Google Scholar 

  • Oka K, Kato T, et al (1981) Kinetic properties of tyrosine hydroxylase with natural tetrahydrobiopterin as cofactor. Biochim. Biophys. Acta. 661(1): 45–53.

    PubMed  CAS  Google Scholar 

  • Olefirowicz TM, Ewing AG (1990) Dopamine concentration in the cytoplasmic compartment of single neurons determined by capillary electrophoresis. J. Neurosci. Meth 34(1–3): 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Peng XM, Tehranian R, et al (2005) Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J. Cell. Sci. 118(15): 3523–3530.

    Article  PubMed  CAS  Google Scholar 

  • Perlman RL, Sheard BE (1982) Estimation of the cytoplasmic catecholamine concentrations in pheochromocytoma cells. Biochim. Biophys. Acta 719(2): 334–340.

    PubMed  CAS  Google Scholar 

  • Pickel VM, Beckley SC, et al (1981) Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum. Brain. Res. 225(2): 373–385.

    Article  PubMed  CAS  Google Scholar 

  • Quinsey NS, Luong AQ, et al (1998) Mutational analysis of substrate inhibition in tyrosine hydroxylase. J. Neurochem. 71(5): 2132–2138.

    Article  PubMed  CAS  Google Scholar 

  • Ramsey AJ, Hillas PJ, et al (1996) Characterization of the active site iron in tyrosine hydroxylase. Redox states of the iron. J. Biol. Chem. 271(40): 24395–24400.

    Article  PubMed  CAS  Google Scholar 

  • Ramsey AJ, Fitzpatrick PF (1998) Effects of phosphorylation of serine 40 of tyrosine hydroxylase on binding of catecholamines: evidence for a novel regulatory mechanism. Biochemistry 37(25): 8980–8986.

    Article  PubMed  CAS  Google Scholar 

  • Ramsey AJ, Fitzpatrick PF (2000) Effects of phosphorylation on binding of catecholamines to tyrosine hydroxylase: specificity and thermodynamics. Biochemistry 39(4): 773–778.

    Article  PubMed  CAS  Google Scholar 

  • Rausch WD, Hirata Y, et al (1988) Tyrosine hydroxylase activity in caudate nucleus from Parkinson's disease: effects of iron and phosphorylating agents. J. Neurochem. 50(1): 202–208.

    Article  PubMed  CAS  Google Scholar 

  • Reith J, Benkelfat C, et al (1994) Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc. Natl. Acad. Sci. USA 91(24): 11651–11654.

    Article  PubMed  CAS  Google Scholar 

  • Richtand NM, Inagami T, et al (1985) Purification and characterization of rat striatal tyrosine hydroxylase. Comparison of the activation by cyclic AMP-dependent phosphorylation and by other effectors. J. Biol. Chem. 260(14): 8465–8473.

    PubMed  CAS  Google Scholar 

  • Roskoski R Jr, Roskoski LM (1987) Activation of tyrosine hydroxylase in PC12 cells by the cyclic GMP and cyclic AMP second messenger systems. J. Neurochem. 48(1): 236–242.

    Article  PubMed  CAS  Google Scholar 

  • Royo M, Fitzpatrick PF, et al (2005) Mutation of regulatory serines of rat tyrosine hydroxylase to glutamate: effects on enzyme stability and activity. Arch. Biochem. Biophys. 434(2): 266–274.

    Article  PubMed  CAS  Google Scholar 

  • Salvatore MF, Waymire JC, et al (2001) Depolarization-stimulated catecholamine biosynthesis: involvement of protein kinases and tyrosine hydroxylase phosphorylation sites in situ. J. Neurochem. 79(2): 349–360.

    Article  PubMed  CAS  Google Scholar 

  • Sloane RB, Hughes W, et al (1966) Catechloamine excretion in manic-depressive and schizophrenic psychosis and its relationship to symptomatology. Can. Psychiatr. Assoc. J. 11(1): 6–19.

    PubMed  CAS  Google Scholar 

  • Takahashi R, Nagao Y, et al (1968) Catecholamine metabolism of manic-depressive illness. J. Psychiatr. Res. 6(3): 185–199.

    Article  PubMed  CAS  Google Scholar 

  • Trottier S, Geffard M, et al (1989) Co-localization of tyrosine hydroxylase and GABA immunoreactivities in human cortical neurons. Neurosci. Lett. 106(1–2): 76–82.

    Article  PubMed  CAS  Google Scholar 

  • Vulliet PR, Langan TA, et al (1980) Tyrosine hydroxylase: a substrate of cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 77(1): 92–96.

    Article  PubMed  CAS  Google Scholar 

  • Vulliet PR, Woodgett JR, et al (1984) Phosphorylation of tyrosine hydroxylase by calmodulin-dependent multiprotein kinase. J. Biol. Chem. 259(22): 13680–13683.

    PubMed  CAS  Google Scholar 

  • Vulliet PR, Woodgett JR, et al (1985) Characterization of the sites phosphorylated on tyrosine hydroxylase by Ca2+ and phospholipid-dependent protein kinase, calmodulin-dependent multiprotein kinase and cyclic AMP-dependent protein kinase. FEBS Lett. 182(2): 335–339.

    Article  PubMed  CAS  Google Scholar 

  • Wagner AF, Cirillo VJ, et al (1966) A further study of catecholamine omicron-methylation in schizophrenia. Nature 211(49): 604–605.

    Article  PubMed  CAS  Google Scholar 

  • Wolozin B, Golts N (2002) Iron and Parkinson's disease. Neuroscientist 8(1): 22–32.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi T, Nakata H, et al (1981) A new activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase. Purification and characterization. J. Biol. Chem. 256(11): 5404–5409.

    PubMed  CAS  Google Scholar 

  • Zigmond MJ, Hastings TG, et al (2002) Increased dopamine turnover after partial loss of dopaminergic neurons: compensation or toxicity? Parkinsonism. Relat. Disord. 8(6): 389–393.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

PK and SV are employees of Cellworks Group Inc. (www.cellworksgroup.com) and SV is the chief scientific officer of Cellworks. Fredric Gorin is a scientific technical advisor for Cellworks. We would like to thank K.S. Ramanujan (Chief technical officer of Cellworks) and Rajtarun Madangopal for their critical insights into the computational aspects of the model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shireen Vali.

Additional information

Action Editor: Upinder Bhalla

Appendix 1: Calculation of activation constant of alpha synuclein

Appendix 1: Calculation of activation constant of alpha synuclein

$$ V_{{\max }_{\rm app}} = V_{\max} (1 + [{\rm Alpha}\,{\rm Synuclein}]/{\rm Ka}) $$

Where, \( V_{\max _{{\rm app}} }\) is the maximum velocity attained after activation by alpha Synuclein Vmax is the maximum velocity of dephosphorylation at endogenous levels of alpha Synuclein (negligible),

We know that activity of PP2A was doubled on addition of 100 nM Alpha Synuclein (Peng et al., 2005 )

$$ \Rightarrow V_{\max _{{\rm app}} } = {\rm }2 * V_{\max } $$
$$ 2 * V_{\max } {\rm } = {\rm }V_{\max } (1 + 100\,{\rm nM}/{\rm Ka}) $$
$$ \Rightarrow {\rm Ka} = 100\,{\rm nM} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushik, P., Gorin, F. & Vali, S. Dynamics of tyrosine hydroxylase mediated regulation of dopamine synthesis. J Comput Neurosci 22, 147–160 (2007). https://doi.org/10.1007/s10827-006-0004-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-0004-8

Keywords

Navigation