Skip to main content
Log in

New schemes for creating large optical Schrödinger cat states using strong laser fields

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Recently, using conditioning approaches on the high-harmonic generation process induced by intense laser-atom interactions, we have developed a new method for the generation of optical Schrödinger cat states (Lewenstein et al. in Nat Phys, 17 1104–1108, 2021. https://doi/10.1038/s41567-021-01317-w). These quantum optical states have been proven to be very manageable as, by modifying the conditions under which harmonics are generated, one can interplay between kitten and genuine cat states. Here, we demonstrate that this method can also be used for the development of new schemes towards the creation of optical Schrödinger cat states, consisting of the superposition of three distinct coherent states. Apart from the interest these kind of states have on their own, we additionally propose a scheme for using them towards the generation of large cat states involving the sum of two different coherent states. The quantum properties of the obtained superpositions aim to significantly increase the applicability of optical Schrödinger cat states for quantum technology and quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Code and data availability

The code used for the generation of the presented figures is made available in [38] under the Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0) license.

References

  1. Lewenstein, M., Ciappina, M. F., Pisanty, E., Rivera-Dean, J., Stammer, P., Lamprou, Th., Tzallas, P.: Generation of optical Schrödinger “cat” states in intense laser-matter interactions, Nat. Phys., 17, 1104–1108 (2021). https://doi.org/10.1038/s41567-021-01317-w

    Article  Google Scholar 

  2. J. O’Brien, A. Furusawa and J. Vučković, Photonic quantum technologies, Nature Photon., 3 687–695 (2009). doi: https://doi.org/10.1038/nphoton.2009.229.

    Article  Google Scholar 

  3. N. Gisin and R. Thew, Quantum communication, Nature Photon., 1 165–171 (2007). doi: https://doi.org/10.1038/nphoton.2007.22.

    Article  Google Scholar 

  4. V. Giovannetti, S. Lloyd and L. Maccone, Quantum-Enhanced Measurements: Beating the Standard Quantum Limit, Science, 306 1330–1336 (2004). doi: https://doi.org/10.1126/science.1104149.

    Article  Google Scholar 

  5. Nielsen,M. A., Chuang, I. L.: Quantum Computation and Quantum Information, pp. 277-352. Cambridge University Press, Cambridge, United Kingdom (2010)

  6. A. Gilchrist, K. Nemoto, W. J. Munro, T. C. Ralph, S. Glancy, S. L. Braunstein and G. J. Milburn, Schrödinger cats and their power for quantum information processing, J. Opt B: Quantum Semiclass. Opt., 6 S828 (2004). doi: https://doi.org/10.1088/1464-4266/6/8/032.

    Article  Google Scholar 

  7. W. Tittel, J. Brenderl, H. Zbinden and N. Gisin, Violation of Bell Inequalities by Photons More than 10 km Apart, Phys. Rev. Lett., 81 3563 (1998). doi: https://doi.org/10.1103/PhysRevLett.81.3563.

    Article  Google Scholar 

  8. S. Ecker et al., Overcoming Noise in Entanglement Distribution, Phys. Rev. X, 9 041042 (2019). https://doi.org/10.1103/PhysRevX.9.041042

    Article  Google Scholar 

  9. Stammer, P., Rivera-Dean, J., Lamprou, Th., Pisanty, E., Ciappina, M. F., Tzallas, P. Lewenstein, M.: High-photon number entangled states and coherent state superposition from the extreme-ultraviolet to the far infrared, arXiv:2107.12887 (2021)

  10. K. Amini et al., Symphony on strong field approximation, Rep. Prog. Phys., 82 116001 (2019). doi: https://doi.org/10.1088/1361-6633/ab2bb1

    Article  Google Scholar 

  11. F. Krausz and M. Y. Ivanov, Attosecond physics, Rev. Mod. Phys., 81 163–234 (2009). doi: 10.1103/RevModPhys.81.163.

    Article  Google Scholar 

  12. M. F. Ciappina et al., Attosecond physics at the nanoscale, Rep. Prog. Phys., 80 054401 (2017). doi: https://doi.org/10.1088/1361-6633/aa574e

    Article  Google Scholar 

  13. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum and F. Krausz, X-ray Pulses Approaching the Attosecond Frontier, Science, 291 1923–7 (2001). doi: https://doi.org/10.1126/science.1058561.

    Article  Google Scholar 

  14. T. Popmintchev et al., Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers, Science, 336 1287–1291 (2012). doi: https://doi.org/10.1126/science.1218497.

    Article  MathSciNet  Google Scholar 

  15. P. B. Corkum, Plasma perspective on strong field multiple ionization, Phys. Rev. Lett., 71 1994–1997 (1993). doi: 10.1103/PhysRevLett.71.1994.

    Article  Google Scholar 

  16. Kulander, K. C., Schafer, K. J., Krause, J. L.: Dynamics of short-pulse excitation, ionization and harmonic conversion, pp. 95-110, Plenum, New York (1993)

  17. M. Lewenstein, Ph. Balcou, M. Y. Ivanov, A. L’Huillier and P. B. Corkum, Theory of high-harmonic generation by low-frequency laser fields, Phys. Rev. A, 49 2117–2132 (1994). doi: 10.1103/PhysRevA.49.2117.

    Article  Google Scholar 

  18. B. Sundaram and P. W. Milonni, High-order harmonic generation: Simplified model and relevance of single-atom theories to experiment, Phys. Rev. A, 41 6571–6573 (1990). doi: 10.1103/PhysRevA.41.6571.

    Article  Google Scholar 

  19. H. Xu, Non-perturbative theory of harmonic generation under a high-intensity laser field, Z. Phys. D: At. Mol. Clusters, 28 27–36 (1993). doi: https://doi.org/10.1007/BF01437452.

    Article  Google Scholar 

  20. G. Compagno, K. Dietz and F. Persico, QED theory of harmonic emission by a strongly driven atom, J. Phys. B: At. Mol. Opt. Phys., 27 4779–4815 (1994). doi: https://doi.org/10.1088/0953-4075/27/19/031.

    Article  Google Scholar 

  21. F. I. Gauthey, C. H. Keitel, P. L. Knight and A. Maquet, Role of initial coherence in the generation of harmonics and sidebands from a strongly driven two-level atom, Phys. Rev. A, 52 525–540 (1995). doi: 10.1103/PhysRevA.52.525.

    Article  Google Scholar 

  22. W. Becker, A. Lohr, M. Kleber and M. Lewenstein, A unified theory of high-harmonic generation: Application to polarization properties of the harmonics, Phys. Rev. A, 56 654–656 (1997). doi: https://doi.org/10.1103/PhysRevA.56.645.

    Article  Google Scholar 

  23. D. J. Diestler, Harmonic generation: Quantum-electrodynamical theory of the harmonic photon-number spectrum, Phys. Rev. A, 78 033814 (2008). https://doi.org/10.1103/PhysRevA.78.033814

    Article  Google Scholar 

  24. I. K. Kominis, G. Kolliopoulos, D. Charalambidis and P. Tzallas, Quantum-optical nature of the recollision process in high-order-harmonic generation, Phys. Rev A, 89 063827 (2014). doi: https://doi.org/10.1103/PhysRevA.89.063827

    Article  Google Scholar 

  25. I. A. Gonoskov, N. Tsatrafyllis, I. K. Kominis and P. Tzallas, Quantum optical signatures in strong-field laser physics: Infrared photon-counting in high-order-harmonic generation, Sci. Rep., 6 32821 (2016). doi: 10.1038/srep32821.

    Article  Google Scholar 

  26. A. Bogatskaya, E. A. Volkova and A. M. Popov, Spontaneous transitions in atomic system in the presence of high-intensity laser field, EPL, 116 14003 (2016). doi: 10.1209/0295-5075/116/14003.

    Article  Google Scholar 

  27. A. V. Bogatskaya, E. A. Volkova, V. Y. Kharin and A. M. Popov, Polarization response in extreme nonlinear optics: when can the semiclassical approach be used?, Las. Phys. Lett., 13 045301 (2016). doi: https://doi.org/10.1088/1612-2011/13/4/045301

    Article  Google Scholar 

  28. A. V. Bogatskaya, E. A. Volkova and A. M. Popov, Spontaneous emission of atoms in a strong laser field, JETP, 125 587–596 (2017). doi: 10.1134/S1063776117090114.

    Article  Google Scholar 

  29. Bogatskaya, A. V., Volkova, E. A., Popov, A. M.: Spectroscopy of the atomic system driven by high intensity laser field, arXiv:1701.05777 (2017)

  30. A. I. Magunov and V. V. Strelkov, S-matrix approach to the problem of high-harmonic generation in the field of intense laser wave, Phy. Wave Phen., 25 24–29 (2017). doi: 10.3103/S1541308X17010046.

    Article  Google Scholar 

  31. Rivera-Dean, J.: Quantum-optical analysis of high-order harmonic generation, Master thesis (2019). http://hdl.handle.net/2117/168580

  32. A. Gorlach, O. Neufeld, N. Rivera, O. Cohen and I. Kaminer, The quantum-optical nature of high-harmonic generation, Nat. Commun, 11 4598 (2020). doi: https://doi.org/10.1038/s41467-020-18218-w

    Article  Google Scholar 

  33. D. N. Yangaliev, V. P. Krainov and O. I. Tolstikhin, Quantum theory of radiation by nonstationary systems with application to high-order harmonic generation, Phys. Rev. A, 101 013410 (2020). doi: https://doi.org/10.1103/PhysRevA.101.013410

    Article  Google Scholar 

  34. A. Gombkötő, S. Varró, P. Mati and P. Földi, High-order harmonic generation as induced by a quantized field: Phase-space picture, Phys. Rev. A, 101 013418 (2020). https://doi.org/10.1103/PhysRevA.101.013418

    Article  MathSciNet  Google Scholar 

  35. N. Tsatrafillys, I. K. Kominis, I. A. Gonoskov and P. Tzallas, High-order harmonics measured by the photon statistics of the infrared driving-field exiting the atomic medium, Nat. Commun., 8 15170 (2017). doi: 10.1038/ncomms15170.

    Article  Google Scholar 

  36. N. Tsatrafillys, S. Kühn, M. Dumerque, P. Foldi, S. Kahaly, E. Cormier, I. A. Gonoskov, B. Kiss, K. Varju, S. Varro and P. Tzallas, Quantum Optical Signatures in a Strong Laser Pulse after Interaction with Semiconductors, Phys. Rev. Lett., 122 193602 (2019). https://doi.org/10.1103/PhysRevLett.122.193602

    Article  Google Scholar 

  37. E. Bloch, S. Beaulieu, D. Descamps, S. Petit, F. Légaré, A. Magunov, T. Mairesse and V. Strelkov, Hyper-Raman lines emission concomitant with high-order harmonic generation, New. J. Phys., 21 073006 (2019). doi: https://doi.org/10.1088/1367-2630/ab28b9

    Article  Google Scholar 

  38. Rivera-Dean, J., Stammer, P., Pisanty, E., Lamprou, Th., Tzallas, P., Lewenstein, M., Ciappina, M. F.: Figure-maker code for New schemes for creating large optical Schrödinger cat states using strong laser fields, Zenodo: 5031359 (2021). https://doi.org/10.5281/zenodo.5031359

  39. E. Schrödinger, Die gegenwörtige Situation in der Quantenmechanik, Naturwissenschaften, 23 807–812 (1935). https://doi.org/10.1007/BF01491987

    Article  MATH  Google Scholar 

  40. Lvovsky, A. I., Grangier, P., Ourjoumtsev, A., Parigi, V., Sasaki, M., Tualle-Brouri, R.: Production and applications of non-Gaussian quantum states of light, arXiv:2006.16985 (2020)

  41. Ralph, T. C., Gilchrist, A., Milburn, G. J., Munro,W. J., Glancy, S.: Quantum computation with optical coherent states. Phys. Rev. A., 68, 042319 (2003). https://doi.org/10.1103/PhysRevA.68.042319

  42. B. C. Sanders, Entangled coherent states, Phys. Rev. A, 45 6811 (1992). doi: 10.1103/PhysRevA.45.6811.

    Article  Google Scholar 

  43. Jeong, H., Son, W., Kim, M. S., Ahn, D., Brukner, C̆.: Quantum nonlocality test for continuous-variable states with dichotomic variables. Phys. Rev. A., 67, 012106 (2003). https://doi.org/10.1103/PhysRevA.67.012106

  44. Stobińska, M., Jeong, H., Ralph, T. C.: Violation of Bell’s inequality using classical measurements and nonlinear local operations, Phys. Rev. A, 75 052105 (2007). https://doi.org/10.1103/PhysRevA.75.052105

  45. Munro, W. J., Nemoto, K., Milburn, G. J., Braunstein, S. L.: Weak-force detection with superposed coherent states, Phys. Rev. A, 66 023819 (2002). https://doi.org/10.1103/PhysRevA.66.023819

  46. Dakna, M., Anhut, T., Opatrný, T., Knöll, L., Welsch, D.-G.: Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A., 55, 3184 (1997). https://doi.org/10.1103/PhysRevA.55.3184

  47. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat and P. Grangier, Generating Optical Schrödinger Kittens for Quantum Information Processing, Science, 312 8386 (2006). doi: https://doi.org/10.1126/science.1122858.

    Article  Google Scholar 

  48. B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li and G. Rempe, Deterministic creation of entangled atom-light Schrödinger-cat states, Nature Photon., 13 110–115 (2019). doi: 10.1038/s41566-018-0339-5.

    Article  Google Scholar 

  49. S. J. van Enk, Entanglement Capabilities in Infinite Dimensions: Multidimensional Entangled Coherent States, Phys. Rev. Lett., 91 017902 (2003). https://doi.org/10.1103/PhysRevLett.91.017902

    Article  Google Scholar 

  50. J. Wenger, M. Hafezi, F. Grosshans, R. Tualle-Brouri and P. Grangier, Maximal violation of Bell inequalities using continuous-variable measurements, Phys. Rev. A, 67 012105 (2003). doi: https://doi.org/10.1103/PhysRevA.67.012105

    Article  Google Scholar 

  51. E. Wigner, On the Quantum Correction for Thermodynamic Equilibrium, Phys. Rev., 40 749–759 (1932). doi: https://doi.org/10.1103/PhysRev.40.749.

    Article  MATH  Google Scholar 

  52. M. O. Scully and M. S. Zubairy, Quantum Optics, 72–94. Cambridge University Press, Cambridge, United Kingdom (2006).

    Google Scholar 

  53. W. P. Schleich, Quantum Optics in Phase Space, 67–99. Wiley-VCH, Berlin, Germany (2001).

    Book  Google Scholar 

  54. D. T. Smithey, M. Beck, M. G. Raymer and A. Faridani, Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum, Phys. Rev. Lett., 70 1244 (1993). doi: 10.1103/PhysRevLett.70.1244.

    Article  Google Scholar 

  55. R. L. Hudson, When is the Wigner quasi-probability density non-negative?, Reports on Mathematical Physics, 6 249–252 (1974). doi: https://doi.org/10.1016/0034-4877(74)90007-X.

    Article  MathSciNet  MATH  Google Scholar 

  56. L. Mandel, Sub-poissonian photon statistics in resonance fluorescence, Opt. Lett., 4 205–207 (1979). doi: 10.1364/OL.4.000205.

    Article  Google Scholar 

  57. G. S. Agarwal and K. Tara, Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics. Phys. Rev. A, 46 485 (1992). doi: 10.1103/PhysRevA.46.485.

    Article  Google Scholar 

  58. H. J. Carmichael, Statistical methods in quantum optics 1: master equations and Fokker-Planck equations. Springer-Verlag, Berlin, Germany (1999).

    Book  Google Scholar 

  59. A. Laghout, J. S. Neergaard-Nielsen, I. Rigas, C. Kragh, A. Tipsmark and U. L. Andersen, Amplification of realistic Schrödinger-cat-state-like states by homodyne heralding, Phys. Rev. A, 87 043826 (2013). doi: https://doi.org/10.1103/PhysRevA.87.043826

    Article  Google Scholar 

  60. D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov and A. I. Lvovsky, Enlargement of optical Schrödinger’s cat states, Nature Photon., 11 379–382 (2017). https://doi.org/10.1038/nphoton.2017.57.

  61. T. Gerrits et al., Generation of optical coherent-state superpositions by number-resolved photon substraction from the squeezed vacuum, Phys. Rev. A, 82 031802(R) (2010). doi: 10.1103/PhysRevA.82.031802.

    Article  Google Scholar 

  62. In the literature, even and odd cat states are defined as those that, once expanded in the Fock basis, can be written in terms of even or odd Fock states, respectively. In particular, they correspond to superpositions of the form \(|{\alpha }\rangle \pm |{-\alpha }\rangle\), where the additive superposition leads to even cat states, and the negative superposition to odd cat states. Here, we use the even and odd cat states terminology in a more general basis for referring to even and odd superpositions of displaced number states with respect to some coherent state.

  63. Lamprou, Th. et al.: Quantum-Optical spectroscopy in relativistic laser-plasma interactions using the high-harmonic generation process: a proposal. Photonics, 8, 192 (2021). https://doi.org/10.3390/photonics8060192

    Article  Google Scholar 

  64. Figueira de Morisson Faria, C., Maxwell, A. S.: It is all about phases: ultrafast holographic photoelectron imaging, Rep. Prog. Phys., 83 034401 (2020). https://doi.org/10.1088/1361-6633/ab5c91

Download references

Acknowledgements

ICFO group acknowledges support from ERC AdG NOQIA, State Research Agency AEI (“Severo Ochoa” Center of Excellence CEX2019-000910-S, Plan National FIDEUA PID2019-106901GB-I00/10.13039/501100011033, FPI, QUANTERA MAQS PCI2019-111828-2/10.13039/501100011033), RETOS-QUSPIN, Fundació Privada Cellex, Fundació Mir-Puig, Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341, CERCA program, QuantumCAT\U16-011424, co-funded by ERDF Operational Program of Catalonia 2014-2020), EU Horizon 2020 FET-OPEN OPTOLogic (Grant No 899794), and the National Science Centre, Poland (Symfonia Grant No. 2016/20/W/ST4/00314), Marie Sk\l odowska-Curie grant STREDCH No 101029393, “La Caixa” Junior Leaders fellowships (ID100010434), and EU Horizon 2020 under Marie Sk\l odowska-Curie grant agreement No 847648 (LCF/BQ/PI19/11690013, LCF/BQ/PI20/11760031, LCF/BQ/PR20/11770012). J.R-D. acknowledges support from the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya, as well as the European Social Fund (L’FSE inverteix en el teu futur)–FEDER. P.T. group acknowledges LASERLABEUROPE (H2020-EU.1.4.1.2 Grand ID 654148)), FORTH Synergy Grant AgiIDA (Grand No.: 00133). ELI-ALPS is supported by the European Union and co-financed by the European Regional Development Fund (GINOP Grant No. 2.3.6-15-2015-00001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rivera-Dean.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Probability of success in the generalization of the conditioning approach

Appendix: Probability of success in the generalization of the conditioning approach

Here, we present a more detailed analysis about the probability of success plotted in Figs. 7 and 8. In the text, we are interested in measuring even or odd number of photons in one of the output modes of the beam splitter, as this operation projects the other mode into a cat state, which differ in a relative phase of \(\pi\) depending on the specific measurement that is performed. Thus, the set of positive operator-valued measurements characterizing the operations that we can implement is

$$\begin{aligned} \bigg \{ \mathbbm {1} \otimes {|{0}\rangle }{\langle {0}|}, \mathbbm {1} \otimes \sum _{n=1}^{\infty } {|{2n}\rangle }{\langle {2n}|}, \mathbbm {1} \otimes \sum _{n=0}^{\infty } {|{2n+1}\rangle }{\langle {2n+1}|} \bigg \}, \end{aligned}$$
(32)

which project the second mode into the vacuum state, an even number of photons and an odd number of photons, respectively.

Each of the measurements described in Eq. (32) have a probability associated, so we define the probability of success \(\mathcal {P}\) as the probability of successfully performing one of such measurements. For instance, the probability of successfully measuring an even number of photons is given by

$$\begin{aligned} \mathcal {P}_\text {even} = \dfrac{1}{\mathcal {P}_\text {total}} \hbox {tr}{P_\text {even}\rho }, \end{aligned}$$
(33)

where \(\rho\) is the density matrix characterizing the state of our system, and \(\mathcal {P}_\text {total}\) is given as the sum of all the possible measurements that we can perform, i.e.

$$\begin{aligned} \mathcal {P}_\text {total} = \mathcal {P}_\text {zero} + \mathcal {P}_\text {even} + \mathcal {P}_\text {odd}. \end{aligned}$$
(34)

With all this set, let us consider the architecture presented in the main text used for the generation of enlarged cat states. Using a beam splitter characterized by the mixing angle \(\theta\) and a coherent state of the form \(\left| (\alpha - \delta \alpha ) \tan (\theta ) \right\rangle\), the final state after the beam splitter is given by

$$\begin{aligned} \begin{aligned} \left| \varPhi _\text {BS} \right\rangle&= \dfrac{1}{\sqrt{N}} \Big [ - \xi _1' \left| {\tilde{\alpha }} + \delta \alpha \cos \theta \right\rangle \left| -\delta \alpha \sin \theta \right\rangle \\& \quad + \left| {\tilde{\alpha }} \right\rangle \left| 0 \right\rangle - \xi _2 \left| {\tilde{\alpha }} - \delta \alpha \cos \theta \right\rangle \left| \delta \alpha \sin \theta \right\rangle \Big ], \end{aligned} \end{aligned}$$
(35)

where \({\tilde{\alpha }} = (\alpha -\delta \alpha )/\cos \theta\). Thus, the measurement of an even number of photons projects the state in Eq. (35) into

$$\begin{aligned} \begin{aligned} \left| \varPhi _\text {even} \right\rangle&= \dfrac{1}{\sqrt{N}} \Big [ -\xi _1' \left| {\tilde{\alpha }}+\delta \alpha \cos \theta \right\rangle - \xi _2 \left| {\tilde{\alpha }}-\delta \alpha \cos \theta \right\rangle \Big ]\\& \quad \otimes \sum _{n=1}^\infty \dfrac{(\delta \alpha \sin \theta )^{2n}}{\sqrt{2n!}} e^ {-\tfrac{|\delta \alpha \sin \theta |^2}{2}} \left| 2n \right\rangle \\&\equiv \left| \phi _\text {even} \right\rangle \otimes \sum _{n=1}^\infty \dfrac{(\delta \alpha \sin \theta )^{2n}}{\sqrt{2n!}} e^{-\tfrac{|\delta \alpha \sin \theta |^2}{2}} \left| 2n \right\rangle ; \end{aligned} \end{aligned}$$
(36)

the measurement of an odd number of photons projects the state into

$$\begin{aligned} \begin{aligned} \left| \varPhi _\text {odd} \right\rangle&= \dfrac{1}{\sqrt{N}} \Big [ \xi _1' \left| {\tilde{\alpha }}+\delta \alpha \cos \theta \right\rangle - \xi _2 \left| {\tilde{\alpha }}-\delta \alpha \cos \theta \right\rangle \Big ]\\& \quad \otimes \sum _{n=0}^\infty \dfrac{(\delta \alpha \sin \theta )^{2n+1}}{\sqrt{2n+1!}} e^{-\tfrac{|\delta \alpha \sin \theta |^2}{2}} \left| 2n+1 \right\rangle \\&\equiv \left| \phi _\text {odd} \right\rangle \otimes \sum _{n=0}^\infty \dfrac{(\delta \alpha \sin \theta )^{2n+1}}{\sqrt{2n+1!}} e^{-\tfrac{|\delta \alpha \sin \theta |^2}{2}} \left| 2n+1 \right\rangle ; \end{aligned} \end{aligned}$$
(37)

and, finally, the measurement of zero number of photons leads to

$$\begin{aligned} \begin{aligned} \left| \varPhi _\text {zero} \right\rangle&= \dfrac{1}{\sqrt{N}} \Big [ -\xi _1' \left\langle 0 \right| \left. -\delta \alpha \sin \theta \right\rangle \left| {\tilde{\alpha }} + \delta \alpha \cos \theta \right\rangle + \left| {\tilde{\alpha }} \right\rangle \\& \quad - \xi _2 \left\langle 0 \right| \left. \delta \alpha \sin \theta \right\rangle \left| {\tilde{\alpha }} - \delta \alpha \cos \theta \right\rangle \Big ]\otimes \left| 0 \right\rangle \\&\equiv \left| \phi _\text {zero} \right\rangle \otimes \left| 0 \right\rangle . \end{aligned} \end{aligned}$$
(38)

Thus, the probability of success for each of the three measurements that we can do is given by

$$\begin{aligned}&\mathcal {P}_\text {even} = \dfrac{\langle {\phi _\text {even}|\phi _\text {even}}\rangle }{\mathcal {P}_\text {total}} e^{-|\delta \alpha \sin \theta |^2} \big [ -1 + \cosh (\delta \alpha \sin \theta ) \big ], \end{aligned}$$
(39)
$$\begin{aligned}&\mathcal {P}_\text {odd} = \dfrac{\langle {\phi _\text {odd}|\phi _\text {odd}}\rangle }{\mathcal {P}_\text {total}} e^{-|\delta \alpha \sin \theta |^2} \sinh (\delta \alpha \sin \theta ), \end{aligned}$$
(40)

and

$$\begin{aligned} \mathcal {P}_\text {zero} = \dfrac{\langle {\phi _\text {zero}|\phi _\text {zero}}\rangle }{\mathcal {P}_\text {total}}. \end{aligned}$$
(41)

Note that the case of \(\delta \alpha = 0\) leads to a divergence in the obtained equations. In that case, the applied measurement does not make sense at all because the case of \(\delta \alpha = 0\) corresponds to the situation in which we do not have HHG processes taking place. Thus, no optical Schrödinger cat state is being generated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-Dean, J., Stammer, P., Pisanty, E. et al. New schemes for creating large optical Schrödinger cat states using strong laser fields. J Comput Electron 20, 2111–2123 (2021). https://doi.org/10.1007/s10825-021-01789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01789-2

Keywords

Navigation