Skip to main content
Log in

Study of a Surface Plasmon Resonance Optical Fiber Sensor Based on Periodically Grating and Graphene

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper an optical fiber sensor based on plasmonic resonance of graphene and periodically grating is designed and investigated. The proposed sensor consists of an optical fiber core coated by a copper film, a periodically grating layer and a mono-layer graphene, respectively. Originality of the design comes from insertion of periodically grating layer accompanied by a mono-layer graphene sheet. The structure is optimized and parameters for best performance are introduced. It is shown that applying the periodically grating results in performance enhancement of the sensor. Parametric study is performed and optimized values of copper and grating thicknesses are calculated. With varying refractive index of sensing layer in the range 1.3–1.36, the proposed sensor is investigated and compared with designs based on plasmonic resonances of copper coated by monolayer graphene. It is shown that with applying periodically grating a maximum sensitivity improvement of 5.1 μ m/RIU is achieved, while Quality Factor and Detection Accuracy are maintained in their reasonable ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris RD, Wilkinson JS (1995) Waveguide surface plasmon resonance sensors. Sensors Actuators B Chem 29(1–3):261–267

    Article  CAS  Google Scholar 

  2. Homola J (1997) On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sensors Actuators B Chem 41(1–3):207–211

    Article  CAS  Google Scholar 

  3. Salamon Z, Angus Macleod H, Tollin G (1997) Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1331(2):131–152

    Article  CAS  Google Scholar 

  4. Srivastava SK, Verma R, Gupta BD (2011) Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol. Sensors Actuators B Chem 153(1):194–198

    Article  CAS  Google Scholar 

  5. Srivastava SK, Gupta BD (2011) Influence of ions on the surface plasmon resonance spectrum of a fiber optic refractive index sensor. Sensors Actuators B Chem 156(2):559–562

    Article  CAS  Google Scholar 

  6. Bhatia P, Gupta BD (2012) Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications. Sensors Actuators B Chem 161(1):434–438

    Article  CAS  Google Scholar 

  7. Sharma NK, Rani M, Sajal V (2013) Surface plasmon resonance based fiber optic sensor with double resonance dips. Sensors Actuators B Chem 188:326–333

    Article  CAS  Google Scholar 

  8. Shukla S, Sharma NK, Sajal V (2015) Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study. Sensors Actuators B Chem 206:463–470

    Article  CAS  Google Scholar 

  9. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304

    Article  CAS  Google Scholar 

  10. Yao J, Stewart ME, Maria J, Lee TW, Gray SK, Rogers JA, Nuzzo RG (2008) Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity. Angewandte Chemie International Edition 47(27):5013–5017

    Article  CAS  Google Scholar 

  11. Xiong W, Sikdar D, Yap LW, Guo P, Premaratne M, Li X, Cheng W (2016) Matryoshka-caged gold nanorods: synthesis, plasmonic properties, and catalytic activity. Nano Res 9(2):415–423

    Article  CAS  Google Scholar 

  12. Lee K-L, Lee C-W, Wang W-S, Wei P-K (2007) Sensitive biosensor array using surface plasmon resonance on metallic nanoslits. J Biomed Opt 12(4):044023

    Article  Google Scholar 

  13. Masouleh FF, Das N, Rozati SM (2015) Optimal subwavelength design for efficient light trapping in central slit of plasmonics-based metal-semiconductor-metal photodetector. Opt Quant Electron 47(6):1477–1485

    Article  CAS  Google Scholar 

  14. Das N, Masouleh FF, Mashayekhi HR (2013) A comprehensive analysis of plasmonics-based GaAs MSM-photodetector for high bandwidth-product responsivity. Advances in OptoElectronics 2013. Article ID 793253, p 10

  15. Novoselov KS, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos SVb, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197

    Article  CAS  Google Scholar 

  16. Maurya JB, Prajapati YK, Singh V, Saini JP, Tripathi R (2015) Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer. Opt Quant Electron 47(11):3599–3611

    Article  CAS  Google Scholar 

  17. Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6(12):2748–2754

    Article  CAS  Google Scholar 

  18. Wang XF (2005) Plasmon spectrum of two-dimensional electron systems with Rashba spin-orbit interaction. Phys Rev B 72(8):085317

    Article  Google Scholar 

  19. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283–2307

    Article  CAS  Google Scholar 

  20. Kim M, Jeong CY, Heo H, Kim S (2015) Optical reflection modulation using surface plasmon resonance in a graphene-embedded hybrid plasmonic waveguide at an optical communication wavelength. Opt Lett 40(6):871–874

    Article  CAS  Google Scholar 

  21. Verma A, Prakash A, Tripathi R (2015) Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt Commun 357:106–112

    Article  CAS  Google Scholar 

  22. Li L, Ryu S, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, Steigerwald ML, Brus LE, Flynn GW (2008) Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett 8 (7):1965–1970

    Article  Google Scholar 

  23. Chen T, Li S, Sun H (2012) Metamaterials application in sensing. Sensors 12(3):2742–2765

    Article  Google Scholar 

  24. Nematpour A, Nikoufard M (2018) Plasmonic thin film InP/graphene-based Schottky-junction solar cell using nanorods. J Adv Res 10:15–20

    Article  CAS  Google Scholar 

  25. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW, Ward CA (1983) Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared. Appl Opt 22 (7):1099–1119

    Article  CAS  Google Scholar 

  26. Hammad HF, Antar YMM, Freundorfer AP, Sayer M (2004) A new dielectric grating antenna at millimeter wave frequency. IEEE Trans Antennas Propag 52(1):36–44

    Article  Google Scholar 

  27. Bhatia P, Gupta BD (2011) Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement. Appl Opt 50(14):2032–2036

    Article  Google Scholar 

  28. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    Article  CAS  Google Scholar 

  29. Sharma AK, Gupta BD (2007) On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J Appl Phys 101(9):093111

    Article  Google Scholar 

  30. Sharma AK, Gupta BD (2005) On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers. Opt Commun 245(1–6):159– 169

    Article  CAS  Google Scholar 

  31. Nelson BP, Frutos AG, Brockman JM, Corn RM (1999) Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Anal Chem 71(18):3928–3934

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meisam Esfandiyari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfandiyari, M., Norouzi, M., Haghdoust, P. et al. Study of a Surface Plasmon Resonance Optical Fiber Sensor Based on Periodically Grating and Graphene. Silicon 10, 2711–2716 (2018). https://doi.org/10.1007/s12633-018-9810-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9810-7

Keywords

Navigation